找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear and Inverse Problems in Electromagnetics; PIERS 2017, St. Pete L. Beilina,Yu. G. Smirnov Conference proceedings 2018 Springer Int

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
31#
發(fā)表于 2025-3-26 22:55:43 | 只看該作者
L. Beilina,K. Niinim?ki and other concerning ophthalmic conditions.?.The Columbia Guide to Basic Elements of Eye Care .is specifically designed with the non-ophthalmologist in mind, and provides a foundation of basic eye anatomy and physiology, functional analysis, pathology, and concepts in eye care.. .Each chapter deliv
32#
發(fā)表于 2025-3-27 02:58:06 | 只看該作者
33#
發(fā)表于 2025-3-27 07:35:33 | 只看該作者
Diffraction of TE Polarized Electromagnetic Waves by a Layer with a Nonlinear Medium,constant permittivities. Two widely used types of nonlinearities (Kerr nonlinearity and nonlinearity with saturation) are considered. The problem is to find amplitudes of reflected and transmitted fields. An amplitude of the incident field is supposed to be known. The analytical and numerical soluti
34#
發(fā)表于 2025-3-27 12:26:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:33:01 | 只看該作者
36#
發(fā)表于 2025-3-27 21:07:00 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:40 | 只看該作者
Numerical Studies of the Lagrangian Approach for Reconstruction of the Conductivity in a Waveguide,of the solution on the backscattering boundary of the computational domain. We formulate our inverse problem as an optimization problem and use Lagrangian approach to minimize the corresponding Tikhonov functional. We present a theorem of a local strong convexity of our functional and derive error e
38#
發(fā)表于 2025-3-28 06:08:01 | 只看該作者
39#
發(fā)表于 2025-3-28 07:23:56 | 只看該作者
40#
發(fā)表于 2025-3-28 11:47:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 台湾省| 正安县| 贵德县| 游戏| 东平县| 宁强县| 台北市| 明光市| 汉沽区| 宾阳县| 灵璧县| 定日县| 宁阳县| 蒲城县| 邵阳县| 昌平区| 金川县| 准格尔旗| 鄂温| 望江县| 盐源县| 松桃| 乐陵市| 澄江县| 法库县| 信宜市| 吉林省| 奈曼旗| 东阿县| 金堂县| 塔城市| 宁晋县| 会昌县| 民权县| 荥经县| 习水县| 洪雅县| 错那县| 大悟县| 名山县|