找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Systems of Fractional Differential Equations; Bashir Ahmad,Sotiris K. Ntouyas Book 2024 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:51:28 | 只看該作者
Preliminaries,In this chapter, we collect the concepts of fractional calculus related to our work and fixed point theorems used to study the fractional boundary value problems considered in this monograph.
22#
發(fā)表于 2025-3-25 10:04:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:18:23 | 只看該作者
Existence Results for Coupled Systems of Caputo-Type Sequential Fractional Differential Equations wThis chapter is concerned with the existence and uniqueness of solutions for a coupled system of Caputo-type sequential fractional differential equations equipped with nonlocal integral and Riemann–Stieltjes type boundary conditions.
24#
發(fā)表于 2025-3-25 18:14:46 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:38 | 只看該作者
27#
發(fā)表于 2025-3-26 06:43:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:55:26 | 只看該作者
Coupled Systems of Sequential Caputo and Hadamard Fractional Differential Equations with Coupled SeIn this chapter, we develop the existence criteria for solutions of a coupled system of sequential Caputo and Hadamard fractional differential equations complemented with coupled separated boundary conditions.
29#
發(fā)表于 2025-3-26 13:43:00 | 只看該作者
,A System of Fractional Differential Equations with Erdélyi-Kober Fractional Integral Conditions,In this chapter, we discuss the existence and uniqueness of solutions for a system of fractional differential equations subject to the nonlocal Erdélyi-Kober fractional integral conditions.
30#
發(fā)表于 2025-3-26 20:40:53 | 只看該作者
Positive Solutions for Fractional Differential Systems with Nonlocal Riemann-Liouville Fractional IIn this chapter, we present sufficient conditions for the existence of positive solutions to a nonlocal nonlinear boundary value problem containing Riemann-Liouville fractional derivative and integral operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五寨县| 神农架林区| 麻江县| 岑巩县| 绥阳县| 台中市| 平江县| 丽江市| 宾川县| 白河县| 天柱县| 漳浦县| 鹿邑县| 峨眉山市| 金昌市| 安阳县| 苏尼特左旗| 永仁县| 屏边| 奎屯市| 沐川县| 西昌市| 丽水市| 瑞金市| 黄陵县| 正阳县| 巨鹿县| 竹北市| 洛阳市| 邮箱| 县级市| 扶余县| 深泽县| 商南县| 高雄市| 南和县| 兴隆县| 红安县| 本溪市| 商城县| 洪洞县|