找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Stochastic Evolution Problems in Applied Sciences; N. Bellomo,Z. Brzezniak,L. M. Socio Book 1992 Springer Science+Business Media

[復(fù)制鏈接]
查看: 41143|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:39:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences
編輯N. Bellomo,Z. Brzezniak,L. M. Socio
視頻videohttp://file.papertrans.cn/668/667694/667694.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Nonlinear Stochastic Evolution Problems in Applied Sciences;  N. Bellomo,Z. Brzezniak,L. M. Socio Book 1992 Springer Science+Business Media
出版日期Book 1992
關(guān)鍵詞Boundary value problem; Probability theory; Stochastic processes; equation; linear optimization; partial
版次1
doihttps://doi.org/10.1007/978-94-011-1820-0
isbn_softcover978-94-010-4803-3
isbn_ebook978-94-011-1820-0
copyrightSpringer Science+Business Media Dordrecht 1992
The information of publication is updating

書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences影響因子(影響力)




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences網(wǎng)絡(luò)公開度




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences被引頻次




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences被引頻次學(xué)科排名




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences年度引用




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences年度引用學(xué)科排名




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences讀者反饋




書目名稱Nonlinear Stochastic Evolution Problems in Applied Sciences讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:13:19 | 只看該作者
Stochastic Models and Random Evolution Equations,the time and/or space evolution of its dependent variables. As such, the model equation describes the physical state of the system. When the state of the system is defined by more than one variable, the mathematical model is given in terms of a set of equations, the number of which is equal to the number of components of the state variable.
地板
發(fā)表于 2025-3-22 05:51:33 | 只看該作者
The Random Initial Boundary Value Problem,When dealing with Problems 1 and 2 introduced in Section 2 of Chapter 1, the physical situation to be studied can be considered as an input-output system where the set of initial and boundary conditions represent the input and the actual solution of the problem is the output and the phenomenology is modelled by a partial differential equation.
5#
發(fā)表于 2025-3-22 09:03:24 | 只看該作者
Further Developments of the Sai Method,All the preceding chapters were essentially devoted to stochastic evolution problems which are described by partial differential equations with their proper initial and boundary conditions. However the SAI method seems flexible enough to be adopted for the solution of a larger class of mathematical problems.
6#
發(fā)表于 2025-3-22 15:01:31 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:59:25 | 只看該作者
Stochastic Systems with Addional Weighted Noise,r of the dependent variable is defined by the superposition on a deterministic evolution (in space and time) of an additional weighted noise. This type of modelling was already announced in Chapter 1 when we presented Eq.(1.14).
9#
發(fā)表于 2025-3-23 02:38:15 | 只看該作者
978-94-010-4803-3Springer Science+Business Media Dordrecht 1992
10#
發(fā)表于 2025-3-23 07:10:21 | 只看該作者
Overview: 978-94-010-4803-3978-94-011-1820-0
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 11:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马龙县| 崇文区| 眉山市| 巴马| 安徽省| 临海市| 温州市| 和硕县| 丹江口市| 庆云县| 石家庄市| 美姑县| 克山县| 南宁市| 红桥区| 寿光市| 皋兰县| 双城市| 清流县| 万源市| 鄂伦春自治旗| 北宁市| 漯河市| 合山市| 大安市| 即墨市| 吉木萨尔县| 鸡西市| 龙岩市| 虎林市| 满城县| 延庆县| 崇文区| 同心县| 镇赉县| 大名县| 航空| 台东县| 互助| 德令哈市| 娄烦县|