找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Stochastic Dynamic Engineering Systems; IUTAM Symposium Inns F. Ziegler,G. I. Schu?ller Conference proceedings 1988 Springer-Verl

[復(fù)制鏈接]
樓主: MOURN
31#
發(fā)表于 2025-3-26 21:16:47 | 只看該作者
Chaos in Nonlinear Systems Subjected to Small Random Perturbationsministic systems modeled by a one-dimensional mapping are analyzed when the system is perturbed by a multiplicative and an additive noise. Stochastic versions of invariant measure and Lyapunov exponent are calculated and are comparatively discussed with deterministic ones, from the viewpoint of cons
32#
發(fā)表于 2025-3-27 01:13:54 | 只看該作者
Stochastic Stability of Modes at Rest in Coupled Nonlinear Systemse subjected to external random excitation. Sufficient conditions for stability of the rest modes are established and applied to examine the stability of pitching vibration in a nonlinear absorber subjected to a random vertical support excitation.
33#
發(fā)表于 2025-3-27 07:18:14 | 只看該作者
34#
發(fā)表于 2025-3-27 13:30:54 | 只看該作者
Lyapunov Exponents of Nonlinear Stochastic Systemsts. The theory of Lyapunov exponents enables one to talk about stochastic stability, stochastic chaos and stochastic bifurcation of nonlinear stochastic systems in a way that is surprisingly analogous to the deterministic one.
35#
發(fā)表于 2025-3-27 15:50:43 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:53 | 只看該作者
37#
發(fā)表于 2025-3-28 00:37:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:22:48 | 只看該作者
39#
發(fā)表于 2025-3-28 08:48:25 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:29 | 只看該作者
Stability of Linear Differential Systems with Parametric ExcitationThe aim of this paper is to summarize both theoritical and numerical results concerning the dependence of the Lyapunov exponent of the solution of the solution of a linear equation, in terms of some parameters describing the law of the parametric excitation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺平县| 甘德县| 措勤县| 运城市| 北宁市| 内江市| 西林县| 巴东县| 延吉市| 吉林市| 东阳市| 南丹县| 莲花县| 泸定县| 宽城| 乌海市| 临武县| 大方县| 湟中县| 东城区| 垫江县| 塔城市| 达尔| 徐汇区| 鹰潭市| 孟津县| 德阳市| 合阳县| 策勒县| 靖远县| 甘德县| 贵溪市| 顺义区| 尼木县| 上林县| 梧州市| 泾阳县| 蒙城县| 抚顺县| 卢龙县| 延长县|