找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Phenomena at Phase Transitions and Instabilities; T. Riste Book 1982 Springer Science+Business Media New York 1982 cluster.cryst

[復(fù)制鏈接]
樓主: 解毒藥
31#
發(fā)表于 2025-3-27 00:53:26 | 只看該作者
32#
發(fā)表于 2025-3-27 04:30:43 | 只看該作者
,Investigation of Fluctuations and Oscillatory States in Rayleigh-Bénard Systems by Neutron Scatterie elongated molecules have an anisotropic scattering power, i.e. the scattering depends on the orientation of the molecules relative to the (horizontal) scattering vector. There exists a well-known coupling between orientation and flow in nematics [1], and the onset and changes in the flow can be de
33#
發(fā)表于 2025-3-27 05:43:44 | 只看該作者
,A Rayleigh Bénard Experiment: Helium in a Small Box,gh Benard experiment, and we will study the case of a small Prandtl number fluid (0.4 < P < 1). To simplify the problem some more we shall restrict ourselves to the geometry of a small rectangular box with two or three convective rolls present. This somewhat artificial case allows us to truncate the
34#
發(fā)表于 2025-3-27 11:34:34 | 只看該作者
Period Doubling Bifurcation Route to Chaos,versal character. Although at this stage the extent at which the theory is applicable is not entirely clear, it is generally believed that it should hold for a large class of nonlinear systems, provided that phase trajectories remain confined in a phase region of adequately low dimension.
35#
發(fā)表于 2025-3-27 14:09:58 | 只看該作者
Space-Time Symmetry in Doubly Periodic Circular Couette Flow,etermined the spatial and temporal characteristics of the doubly periodic flow regime. In many cases doubly periodic flow is the final preturbulent regime, so a thorough understanding of this regime is important for understanding the onset of turbulence in such cases.
36#
發(fā)表于 2025-3-27 18:39:25 | 只看該作者
The Structure and Dynamics of Non-Stationary Taylor-Vortex Flow,the Reynolds number, the first of the nonstationary flows may either be (i) the “wavy mode”, in which azimuthal waves are superimposed upon the stationary Taylor vortices, or (ii) the “jet instability”, where the fast outward flow oscillates in axial direction. For the wide gap geometry of our appar
37#
發(fā)表于 2025-3-28 00:24:38 | 只看該作者
Pattern Formation during Crystal Growth: Theory,of dendrites and, next, at directional solidification of cellular structures and eutectics. In the first case, a study of the stability of the dendrite tip and related sidebranching deformations leads naturally to an hypothesis that the dendrite operates at or near a point of marginal instability. T
38#
發(fā)表于 2025-3-28 05:30:19 | 只看該作者
Solitons in the One-Dimensional Planar Ferromagnet CsNiF3,proposed by Mikeska. In the geometry used there is no contribution to the observed scattering from the two-magnon processes which have been proposed as an alternative explanation of the central peak found in S.(q,ω)).
39#
發(fā)表于 2025-3-28 09:43:30 | 只看該作者
On the Possibility to Create Nonthermal Solitons in a One Dimensional Magnetic Sine Gordon System,em by a time dependent magnetic field. These nonthermal solitons will appear in addition to the thermally excited ones. This would open e.g. the possibility to study a nonequilibrium system and questions like soliton-soliton interaction (if the density is made high enough) and soliton diffusion (because they are created locally).
40#
發(fā)表于 2025-3-28 10:36:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济阳县| 赤城县| 措美县| 孟州市| 德保县| 塔河县| 青岛市| 从化市| 博乐市| 普陀区| 乐至县| 张家港市| 松江区| 堆龙德庆县| 万山特区| 建宁县| 尼木县| 汾阳市| 泰安市| 通江县| 惠来县| 沁源县| 淮北市| 宁德市| 平顶山市| 黎平县| 博乐市| 喜德县| 怀安县| 精河县| 互助| 军事| 新疆| 科技| 眉山市| 景洪市| 中山市| 常山县| 涟水县| 崇义县| 武冈市|