找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Phenomena; Proceedings of the C K. B. Wolf Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Hamiltonian.differe

[復(fù)制鏈接]
樓主: miserly
41#
發(fā)表于 2025-3-28 14:37:54 | 只看該作者
42#
發(fā)表于 2025-3-28 22:42:38 | 只看該作者
43#
發(fā)表于 2025-3-29 01:17:13 | 只看該作者
Energy transport in an inhomogeneous Heisenberg ferromagnetic chain,ed nonlinear Schr?dinger equation with .-dependent coefficients is proved. An extension of the AKNS-ZS formalism is given which enables us to solve the latter equation exactly for certain specific inhomogeneities. Energy-momentum transport along the chain is related to the solution of this equation.
44#
發(fā)表于 2025-3-29 03:43:11 | 只看該作者
Atomic nuclei as solitons, in which the .-empirical bound state energies are associated with the solutions, and formulate generally the problem of nuclear structure, reactions, and two-nucleon interactions from an inverse scattreing theory approach.
45#
發(fā)表于 2025-3-29 08:40:25 | 只看該作者
46#
發(fā)表于 2025-3-29 14:06:26 | 只看該作者
Nonlinear Phenomena978-3-540-38721-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
47#
發(fā)表于 2025-3-29 15:42:47 | 只看該作者
0075-8450 Overview: 978-3-540-12730-7978-3-540-38721-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
48#
發(fā)表于 2025-3-29 19:57:36 | 只看該作者
,Integrability in dynamical systems and the Painlevé property,The analytic structure of the solution of an ordinary differential equation is intimately related to its integrability. The Painlevé property, ., pure poles being the only movable singularities, allows the identification of new integrable dynamical systems. In this paper, we recall briefly the Ablowita-Ramani-Segur (ARS) algorithm
49#
發(fā)表于 2025-3-30 03:50:41 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/n/image/667636.jpg
50#
發(fā)表于 2025-3-30 05:57:46 | 只看該作者
https://doi.org/10.1007/3-540-12730-5Hamiltonian; differential equation; dynamical system; dynamical systems; general relativity; geometry; inv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 平昌县| 正蓝旗| 通江县| 弥勒县| 九龙县| 固阳县| 兴宁市| 锡林郭勒盟| 兴义市| 安陆市| 武川县| 塘沽区| 嘉义市| 杭锦旗| 耒阳市| 油尖旺区| 陆良县| 宜宾县| 临沭县| 定安县| 闻喜县| 成武县| 屯门区| 天台县| 宝坻区| 临湘市| 沙湾县| 六安市| 广南县| 永靖县| 大洼县| 长乐市| 咸丰县| 喀什市| 余江县| 五指山市| 日喀则市| 辽阳市| 长治市| SHOW|