找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Model Predictive Control; Theory and Algorithm Lars Grüne,Jürgen Pannek Book 2017Latest edition Springer International Publishing

[復(fù)制鏈接]
樓主: 不友善
31#
發(fā)表于 2025-3-27 00:02:22 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:14 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:32:20 | 只看該作者
Economic NMPC,mance of economic MPC. In this chapter, we will rigorously establish stability as well as averaged and non-averaged performance estimates for strictly dissipative economic MPC problems, both with and without terminal conditions.
35#
發(fā)表于 2025-3-27 15:24:36 | 只看該作者
Numerical Discretization,ep size control algorithms. Furthermore,we explain how these methods can be integrated into NMPC algorithms, investigate how the numerical errors affect the stability of the NMPC controller derived from the numerical model and show which kind of robustness is needed in order to ensure a practical kind of stability.
36#
發(fā)表于 2025-3-27 18:40:54 | 只看該作者
Book 2017Latest edition NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse opt
37#
發(fā)表于 2025-3-27 21:55:19 | 只看該作者
38#
發(fā)表于 2025-3-28 02:49:24 | 只看該作者
Stability and Suboptimality Using Stabilizing Terminal Conditions,city” of the finite time optimal value functions is proved and used in order to apply the relaxed dynamic programming framework introduced in the previous chapter. Using this framework, stability, suboptimality (i.e., estimates about the infinite horizon performance of the NMPC closed-loop system), and inverse optimality results are proved.
39#
發(fā)表于 2025-3-28 07:29:05 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬莱市| 连山| 台中县| 绥滨县| 芦溪县| 南平市| 通河县| 澜沧| 德令哈市| 平利县| 迭部县| 石泉县| 康平县| 霍山县| 广平县| 南江县| 临海市| 本溪| 贵溪市| 施甸县| 西乌珠穆沁旗| 昌都县| 民县| 开原市| 新兴县| 吉林省| 广昌县| 铜鼓县| 武义县| 土默特右旗| 睢宁县| 湛江市| 布拖县| 长泰县| 卢氏县| 凭祥市| 温宿县| 武清区| 安义县| 津市市| 白玉县|