找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Mathematics for Uncertainty and its Applications; Shoumei Li,Xia Wang,Li Guan Conference proceedings 2011 Springer Berlin Heidel

[復(fù)制鏈接]
樓主: Gram114
31#
發(fā)表于 2025-3-27 00:24:22 | 只看該作者
Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity,uity. Our results are natural extensions of the classical Kolmogorov’s strong law of large numbers to the case where probability measures become to imprecise. Finally, an important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.
32#
發(fā)表于 2025-3-27 01:20:06 | 只看該作者
On Spaces of Bochner and Pettis Integrable Functions and Their Set-Valued Counterparts, setting and the canonical Banach spaces of bounded maps between Banach spaces that they generate. The main tool that we use to relate the Banach space-valued case to the set-valued case, is the R?dstr?m embedding theorem.
33#
發(fā)表于 2025-3-27 06:31:22 | 只看該作者
Upper Derivatives of Set Functions Represented as the Choquet Indefinite Integral, derivative of . at a measurable set . with respect to a measure . is, under a certain condition, equal to the difference calculated by subtracting the product of the negative part ... and the lower derivative of . at the whole set with respect to . from the product of the positive part .. and the upper derivative of . at . with respect to ..
34#
發(fā)表于 2025-3-27 12:56:49 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:07:09 | 只看該作者
Fuzzy Stochastic Integral Equations Driven by Martingales,l and a notion of fuzzy stochastic trajectory integral with respect to martingale. Then we use these integrals in a formulation of fuzzy stochastic integral equations. We investigate the existence and uniqueness of solution to such the equations.
37#
發(fā)表于 2025-3-27 23:31:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:41:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫云| 黄冈市| 瑞丽市| 阳原县| 静安区| 临朐县| 马鞍山市| 定南县| 西乌珠穆沁旗| 台北县| 洛阳市| 武陟县| 北川| 津南区| 周宁县| 怀仁县| 佛冈县| 五华县| 万年县| 青川县| 台北市| 徐州市| 随州市| 桦南县| 龙南县| 乐陵市| 米脂县| 呼图壁县| 重庆市| 阿克陶县| 驻马店市| 日土县| 清徐县| 卢湾区| 专栏| 法库县| 金门县| 绥宁县| 巴塘县| 江北区| 金华市|