找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Mathematics for Uncertainty and its Applications; Shoumei Li,Xia Wang,Li Guan Conference proceedings 2011 Springer Berlin Heidel

[復制鏈接]
樓主: Gram114
31#
發(fā)表于 2025-3-27 00:24:22 | 只看該作者
Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity,uity. Our results are natural extensions of the classical Kolmogorov’s strong law of large numbers to the case where probability measures become to imprecise. Finally, an important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.
32#
發(fā)表于 2025-3-27 01:20:06 | 只看該作者
On Spaces of Bochner and Pettis Integrable Functions and Their Set-Valued Counterparts, setting and the canonical Banach spaces of bounded maps between Banach spaces that they generate. The main tool that we use to relate the Banach space-valued case to the set-valued case, is the R?dstr?m embedding theorem.
33#
發(fā)表于 2025-3-27 06:31:22 | 只看該作者
Upper Derivatives of Set Functions Represented as the Choquet Indefinite Integral, derivative of . at a measurable set . with respect to a measure . is, under a certain condition, equal to the difference calculated by subtracting the product of the negative part ... and the lower derivative of . at the whole set with respect to . from the product of the positive part .. and the upper derivative of . at . with respect to ..
34#
發(fā)表于 2025-3-27 12:56:49 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:07:09 | 只看該作者
Fuzzy Stochastic Integral Equations Driven by Martingales,l and a notion of fuzzy stochastic trajectory integral with respect to martingale. Then we use these integrals in a formulation of fuzzy stochastic integral equations. We investigate the existence and uniqueness of solution to such the equations.
37#
發(fā)表于 2025-3-27 23:31:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:41:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安远县| 屏东县| 南开区| 江西省| 山东| 永州市| 琼海市| 克山县| 黄平县| 玉龙| 济南市| 九台市| 新蔡县| 缙云县| 陇西县| 陈巴尔虎旗| 广东省| 平江县| 沈阳市| 泽库县| 双流县| 鲁甸县| 赤水市| 称多县| 玛沁县| 天全县| 双鸭山市| 遂昌县| 宁远县| 岗巴县| 黎川县| 吉木萨尔县| 谷城县| 昭通市| 浦东新区| 汪清县| 高邮市| 太原市| 宜城市| 汕头市| 揭西县|