找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution Equations and Dynamical Systems; Sandra Carillo,Orlando Ragnisco Conference proceedings 1990 Springer-Verlag Berlin He

[復(fù)制鏈接]
查看: 26579|回復(fù): 54
樓主
發(fā)表于 2025-3-21 20:01:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Evolution Equations and Dynamical Systems
編輯Sandra Carillo,Orlando Ragnisco
視頻videohttp://file.papertrans.cn/668/667484/667484.mp4
叢書名稱Research Reports in Physics
圖書封面Titlebook: Nonlinear Evolution Equations and Dynamical Systems;  Sandra Carillo,Orlando Ragnisco Conference proceedings 1990 Springer-Verlag Berlin He
出版日期Conference proceedings 1990
關(guān)鍵詞Dynamische Systeme; Integrable Hamilton Systeme; Inverse Methoden; Nichtlineare Evolutionsgleichungen; S
版次1
doihttps://doi.org/10.1007/978-3-642-84039-5
isbn_softcover978-3-540-51983-6
isbn_ebook978-3-642-84039-5Series ISSN 0939-7426
issn_series 0939-7426
copyrightSpringer-Verlag Berlin Heidelberg 1990
The information of publication is updating

書目名稱Nonlinear Evolution Equations and Dynamical Systems影響因子(影響力)




書目名稱Nonlinear Evolution Equations and Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Evolution Equations and Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Nonlinear Evolution Equations and Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Evolution Equations and Dynamical Systems被引頻次




書目名稱Nonlinear Evolution Equations and Dynamical Systems被引頻次學(xué)科排名




書目名稱Nonlinear Evolution Equations and Dynamical Systems年度引用




書目名稱Nonlinear Evolution Equations and Dynamical Systems年度引用學(xué)科排名




書目名稱Nonlinear Evolution Equations and Dynamical Systems讀者反饋




書目名稱Nonlinear Evolution Equations and Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:21 | 只看該作者
Equations That Pass Hirota’s Three-Soliton Condition and Other Tests of Integrabilitymation to put the nonlinear evolution equation (NEE) in a form which is quadratic in the dependent variable(s) and where derivatives appear only through the bilinear operator defined below. In this form the construction of soliton solutions is much easier.
板凳
發(fā)表于 2025-3-22 01:30:26 | 只看該作者
Selection of Solvable Nonlinear Evolution Equations by Systematic Searches for Lie B?cklund SymmetriD.E which possesses high order L.-B. symmetries may be transformed to a linear equation and solved exactly. The author has found solvable examples for (i) horizontal flow in unsaturated scale-heterogeneous porous media .and (ii) the heterogeneous nonlinear Schr?dinger equation with dielectric loss,
地板
發(fā)表于 2025-3-22 04:33:54 | 只看該作者
Reflection Coefficients and Polesthe Schr?dinger equation,.exist, with the following asymptotic behaviours:.where the transmission and reflection coefficients have the following properties:.for simplicity of notation, we accordingly drop the suffix on the transmission coefficient in what follows.
5#
發(fā)表于 2025-3-22 12:39:32 | 只看該作者
On Integration of the Korteweg-de Vries Equation with a Self-consistent Sourcedition Re λ.(t)>0 at any t≥0; the bar means complex conjugation, and the operator L has the form . We are interested in the solution u=u(x,t), φ. =φ. (x,t),ψ. =ψ. (x,t), n=1,...N, of the system (1), at any t≥o satisflying the conditions
6#
發(fā)表于 2025-3-22 14:46:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:50:40 | 只看該作者
The Inverse Scattering Transform for the Elliptic Sinh-Gordon EquationThe elliptic Sinh-Gordon equation .appears in plasma physics [1–5] as a two dimensional model equation describing a system of interacting charged particles. Depending on the sign of λ. we can consider both positive and negative temperature states of thermal equilibrium [4], corresponding to essentially different solutions of eq. (1).
8#
發(fā)表于 2025-3-22 22:52:30 | 只看該作者
9#
發(fā)表于 2025-3-23 03:10:30 | 只看該作者
10#
發(fā)表于 2025-3-23 08:48:36 | 只看該作者
0939-7426 Overview: 978-3-540-51983-6978-3-642-84039-5Series ISSN 0939-7426
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 15:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
筠连县| 杭锦后旗| 武威市| 南岸区| 门头沟区| 阿拉善左旗| 临江市| 和平区| 禹州市| 苏尼特右旗| 土默特右旗| 肃北| 霍邱县| 东方市| 黎城县| 抚顺县| 彰化市| 甘谷县| 合水县| 司法| 怀柔区| 台山市| 宁晋县| 五指山市| 木兰县| 中西区| 卫辉市| 琼海市| 石嘴山市| 淄博市| 宁远县| 安化县| 高密市| 博罗县| 大英县| 湖州市| 斗六市| 翁牛特旗| 新营市| 陆川县| 湘潭县|