找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Economic Dynamics; T?nu Puu Book 19912nd edition Springer-Verlag Berlin · Heidelberg 1991 Bifurcations.Chaos.Chaostheorie.Dynami

[復(fù)制鏈接]
樓主: 使無罪
11#
發(fā)表于 2025-3-23 13:37:26 | 只看該作者
https://doi.org/10.1007/978-3-642-97291-1Bifurcations; Chaos; Chaostheorie; Dynamische Wirtschaftstheorie; Spatial Pattern Formation; business cyc
12#
發(fā)表于 2025-3-23 16:25:49 | 只看該作者
Nonlinear Economic Dynamics,Dynamic analysis in economics is as old as economics itself. A glance at the subject index in Schumpeter (1954) is sufficient to convince you about this. Even dynamic mathematical models are fairly old. The cobweb model of price adjustments for instance dates back to 1887.
13#
發(fā)表于 2025-3-23 19:27:14 | 只看該作者
14#
發(fā)表于 2025-3-23 23:45:09 | 只看該作者
Springer-Verlag Berlin · Heidelberg 1991
15#
發(fā)表于 2025-3-24 05:35:04 | 只看該作者
Spatial Pattern Formation,sics. Spatial patterns in the two-and three-dimensional world, such as beehives or foams of soap bubbles, have fascinated mankind from antiquity to present times. There exist parallels in biology, physics, and economics in the present field so as to make it a good prototype for the comparison of var
16#
發(fā)表于 2025-3-24 06:43:07 | 只看該作者
Population Dynamics,cess, whereas Fourier’s heat diffusion was the source of inspiration for migratory processes in space. A saturation density of population was assumed, if the actual density was higher, population decreased, if the actual density was lower, population increased. The reason for spatial diffusion state
17#
發(fā)表于 2025-3-24 13:29:12 | 只看該作者
18#
發(fā)表于 2025-3-24 15:01:57 | 只看該作者
Chaotic Cycles, chaos for discrete models. This is so because, before the tools of analysis, like symbolic dynamics, can be applied to such models we need to construct the return map on the Poincaré section for the orbit investigated. This, however, means that we first have to integrate the system over a complete
19#
發(fā)表于 2025-3-24 20:12:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:23:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰镇市| 安西县| 平果县| 新竹县| 阳曲县| 尉氏县| 望奎县| 石景山区| 清原| 阳新县| 扎兰屯市| 隆子县| 安仁县| 德惠市| 天柱县| 吉水县| 威信县| 休宁县| 商水县| 博湖县| 大安市| 株洲县| 卢龙县| 屏南县| 鹤峰县| 五台县| 九江县| 鄂托克前旗| 弥勒县| 海口市| 奇台县| 巴楚县| 武夷山市| 六盘水市| 涞源县| 昌图县| 盐城市| 龙泉市| 安仁县| 犍为县| 博客|