找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamics and Complexity; Mathematical Modelli Carla M.A. Pinto Book 2022 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
查看: 13682|回復(fù): 63
樓主
發(fā)表于 2025-3-21 17:00:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Dynamics and Complexity
副標(biāo)題Mathematical Modelli
編輯Carla M.A. Pinto
視頻videohttp://file.papertrans.cn/668/667422/667422.mp4
概述Illustrates methods for finding chaos from periodic motions.Includes applications to nonlinear physics and nonlinear engineering.Maximizes understanding of differential-invariant solutions, impulsive
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Nonlinear Dynamics and Complexity; Mathematical Modelli Carla M.A. Pinto Book 2022 The Editor(s) (if applicable) and The Author(s), under e
描述This book collects a range of contributions on nonlinear dynamics and complexity, providing a systematic summary of recent developments, applications, and overall advances in nonlinearity, chaos, and complexity. It presents both theories and techniques in nonlinear systems and complexity and serves as a basis for more research on synchronization and complexity in nonlinear science as well as a mechanism to fast-scatter the new knowledge to scientists, engineers, and students in the corresponding fields. Written by world-renown experts from across the globe, the collection is ideal for researchers, practicing engineers, and students concerned with machinery and controls, manufacturing, and controls.
出版日期Book 2022
關(guān)鍵詞Nonlinear differential equation solvability; Differential-invariant solutions; From chaos to order; Non
版次1
doihttps://doi.org/10.1007/978-3-031-06632-0
isbn_softcover978-3-031-06634-4
isbn_ebook978-3-031-06632-0Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Nonlinear Dynamics and Complexity影響因子(影響力)




書目名稱Nonlinear Dynamics and Complexity影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Dynamics and Complexity網(wǎng)絡(luò)公開度




書目名稱Nonlinear Dynamics and Complexity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Dynamics and Complexity被引頻次




書目名稱Nonlinear Dynamics and Complexity被引頻次學(xué)科排名




書目名稱Nonlinear Dynamics and Complexity年度引用




書目名稱Nonlinear Dynamics and Complexity年度引用學(xué)科排名




書目名稱Nonlinear Dynamics and Complexity讀者反饋




書目名稱Nonlinear Dynamics and Complexity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:45 | 只看該作者
Analysis of the Temporal Evolution of Plumeria Bud by Measuring Its Complex Impedance: Detection ofehavioral variations in the complex impedance. Owing to their overabundance in tropical and subtropical areas and the superior medicinal and aromatic values of plumeria flowers of the Apocynaceae family have attracted much attention to studying the structures of their chemical constituents at the mo
板凳
發(fā)表于 2025-3-22 03:49:46 | 只看該作者
地板
發(fā)表于 2025-3-22 04:50:44 | 只看該作者
5#
發(fā)表于 2025-3-22 09:05:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:05 | 只看該作者
7#
發(fā)表于 2025-3-22 17:49:38 | 只看該作者
8#
發(fā)表于 2025-3-23 01:02:32 | 只看該作者
On the Probabilistic Extension of the Classical Epidemiological Compartmental Model, by scientists, where the mathematics has played an important role, to study and predict the short-, medium-, and long-term behaviour of the pandemic. The classical SIR and SEIR models have been revisited and several papers have been appeared with new upgraded proposals. Statistical models of machin
9#
發(fā)表于 2025-3-23 03:07:33 | 只看該作者
10#
發(fā)表于 2025-3-23 07:04:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五莲县| 宕昌县| 共和县| 鹤岗市| 犍为县| 贵南县| 大化| 方正县| 奉节县| 渝中区| 乐亭县| 乌什县| 方山县| 芦溪县| 浦江县| 嵊州市| 抚顺县| 闸北区| 房山区| 天峻县| 白河县| 余江县| 崇礼县| 清河县| 万盛区| 湟中县| 平邑县| 攀枝花市| 庆安县| 佛坪县| 巴林左旗| 临夏市| 白河县| 新源县| 肃宁县| 怀宁县| 岳阳县| 阆中市| 漠河县| 藁城市| 鄂托克旗|