找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Differential Equations and Dynamical Systems; Ferdinand Verhulst Textbook 19901st edition Springer-Verlag Berlin Heidelberg 1990

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:27:34 | 只看該作者
Introduction to the theory of stability, ideas pose difficult questions. In defining stability, this concept turns out to have many aspects. Also there is of course the problem that in investigating the stability of a special solution, one has to characterise the behaviour of a set of solutions. One solution is often difficult enough.
32#
發(fā)表于 2025-3-27 01:18:17 | 只看該作者
Bifurcation theory,-plane is a centre point. If the parameter is positive with 0 < μ < 1, the origin is an unstable focus and there exists an asymptotically stable periodic solution, corresponding with a limit cycle around the origin. Another important illustration of the part played by parameters is the forced Duffing-equation in section 10.3 and example 11.8.
33#
發(fā)表于 2025-3-27 09:02:30 | 只看該作者
Chaos,ems. We shall restrict ourselves to a discussion of two examples from the various domains where these phenomena have been found: autonomous differential equations with dimension . ≥ 3, second-order forced differential equations like the forced van der Pol- or the forced Duffing equation and mappings of ? into ?, ?. into ?. etc.
34#
發(fā)表于 2025-3-27 09:59:46 | 只看該作者
35#
發(fā)表于 2025-3-27 14:43:01 | 只看該作者
36#
發(fā)表于 2025-3-27 18:19:41 | 只看該作者
0172-5939 es and the research literature. The basic concepts necessary to study differential equations - critical points and equilibrium, periodic solutions, invariant sets and invariant manifolds - are discussed. Stability theory is developed starting with linearisation methods going back to Lyapunov and Poi
37#
發(fā)表于 2025-3-28 01:21:40 | 只看該作者
Introduction, the form(1.1) $${dot x}= f(t,x)$$using Newton’s fluxie notation ? = .. The variable . is a scalar, . ∈ ?, often identified with time. The vector function . : . → ?. is continuous in . and .; . is an open subset of ?., so . ∈ ?..
38#
發(fā)表于 2025-3-28 05:32:56 | 只看該作者
Autonomous equations,f the form (2.1) is called autonomous. A scalar equation of order . is often written as(2.2) $$x^{(n)}+ F(x^{(n-1)},“ots ,x)=0$$in which . = . ./., . = 0,1, …, ., . = .In characterising the solutions of autonomous equations we shall use three special sets of solutions: . or . and ..
39#
發(fā)表于 2025-3-28 08:02:58 | 只看該作者
40#
發(fā)表于 2025-3-28 10:52:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富宁县| 吉水县| 玉林市| 连山| 邢台市| 阿鲁科尔沁旗| 都安| 苍山县| 清河县| 漯河市| 安泽县| 湘乡市| 泰兴市| 武山县| 江永县| 涞源县| 襄樊市| 达日县| 铜鼓县| 遵义市| 民和| 敦化市| 石棉县| 张家口市| 龙州县| 渭南市| 商都县| 西平县| 中宁县| 锦州市| 信丰县| 湘阴县| 城步| 开化县| 旺苍县| 新疆| 沧源| 嘉峪关市| 苍山县| 长岛县| 湘乡市|