找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis, Geometry and Applications; Proceedings of the S Diaraf Seck,Kinvi Kangni,Marie Salomon Sambou Conference proceedings 20

[復(fù)制鏈接]
樓主: BOUT
21#
發(fā)表于 2025-3-25 05:19:50 | 只看該作者
22#
發(fā)表于 2025-3-25 08:48:57 | 只看該作者
Sidy Ly,Lena Tendeng,Mouhamadou A. M. T. Balde,Diene Ngom,Diaraf Seckrom 8 to 10 February 2010.It covers the themes of urban sust.Technological innovation – combined with scientific research – has always constituted a driving force of transformation in our societies.? At the same time, it is no longer simply possible to transfer technologies from the North to the Sou
23#
發(fā)表于 2025-3-25 13:58:23 | 只看該作者
24#
發(fā)表于 2025-3-25 19:26:53 | 只看該作者
25#
發(fā)表于 2025-3-25 20:11:08 | 只看該作者
26#
發(fā)表于 2025-3-26 03:00:56 | 只看該作者
27#
發(fā)表于 2025-3-26 07:52:08 | 只看該作者
28#
發(fā)表于 2025-3-26 10:05:45 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:14 | 只看該作者
A Study of Sharp Coefficient Bounds for a New Subfamily of Starlike Functions,o the class . of starlike functions in .. In particular, the bounds of the first three Taylor-Maclaurin coefficients, the estimates of the Fekete-Szeg? type functional, and the estimates of the second- and third-order Hankel determinants are the main problems that are proposed to be studied here.
30#
發(fā)表于 2025-3-26 16:50:35 | 只看該作者
Self-intersection on Pair of Pants,ts. We give upper bounds on the number of self-intersections of a closed geodesic on a pair of pants. We prove a conjecture of Moira Chas and Anthony Phillips (Exp Math 21(1):26–37, 2012). We get also bounds for the number of closed geodesics whose self-intersection number is very close to the maximal self-intersection number on a pair of pants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 于田县| 法库县| 犍为县| 楚雄市| 长泰县| 科尔| 云安县| 疏附县| 南充市| 永和县| 玉树县| 遂平县| 玛纳斯县| 隆子县| 吉林省| 开江县| 泰和县| 连南| 泗洪县| 麻栗坡县| 郑州市| 广南县| 宁陵县| 日土县| 西乌珠穆沁旗| 高要市| 靖边县| 当阳市| 绵竹市| 同仁县| 吴桥县| 济源市| 广东省| 纳雍县| 西贡区| 宿松县| 新蔡县| 肇庆市| 临沂市| 伊川县|