找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis, Geometry and Applications; Proceedings of the F Diaraf Seck,Kinvi Kangni,Marie Salomon Sambou Conference proceedings 20

[復(fù)制鏈接]
樓主: 全體
11#
發(fā)表于 2025-3-23 12:57:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:48 | 只看該作者
Introduction to the Resolution of ,,, for the Supercurrents in the Non-archimedean Frame,Chambert-Loir and Ducros introduced a theory of differential forms and real-valued currents on Berkovich spaces using the superforms on polyhedral complexes. In this paper we propose a resolution of the operator of de Rahm for currents defined in an affinoid domain of a space of type Berkovich which happens to be of Stein.
13#
發(fā)表于 2025-3-23 21:57:12 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:28 | 只看該作者
15#
發(fā)表于 2025-3-24 03:24:37 | 只看該作者
978-3-030-57338-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
16#
發(fā)表于 2025-3-24 07:38:46 | 只看該作者
Nonlinear Analysis, Geometry and Applications978-3-030-57336-2Series ISSN 2297-0215 Series E-ISSN 2297-024X
17#
發(fā)表于 2025-3-24 12:09:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:30:33 | 只看該作者
Null Controllability of a System of Degenerate Nonlinear Coupled Equations Derived from Population n type inequality for the adjoint system of an intermediate model. From this inequality, we derive our observability inequality. Next, by a fixed point argument, we prove the null controllability result with an internal control acting on a small subset of the domain.
19#
發(fā)表于 2025-3-24 19:05:52 | 只看該作者
20#
發(fā)表于 2025-3-24 23:55:07 | 只看該作者
Monotony and Comparison Principle in Non Autonomous Size Structured Models,rove in this paper some monotony properties of a class of general non linear non autonomous size(age)-structured population dynamic models. Our results are applied to an example in order to show how one can prove some global asymptotic properties by using comparison principle.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹凤县| 亳州市| 乐平市| 银川市| 光泽县| 高尔夫| 五河县| 松滋市| 栾川县| 扎兰屯市| 石台县| 永年县| 兴海县| 平塘县| 金华市| 东乡族自治县| 永德县| 通州市| 曲靖市| 铁力市| 南华县| 东海县| 潢川县| 罗甸县| 昔阳县| 锡林郭勒盟| 新巴尔虎右旗| 夏邑县| 罗江县| 河东区| 江西省| 武宣县| 朝阳区| 东乌珠穆沁旗| 武宁县| 翼城县| 林西县| 女性| 华安县| 德庆县| 营山县|