找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis, Geometry and Applications; Proceedings of the F Diaraf Seck,Kinvi Kangni,Marie Salomon Sambou Conference proceedings 20

[復(fù)制鏈接]
樓主: 全體
11#
發(fā)表于 2025-3-23 12:57:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:48 | 只看該作者
Introduction to the Resolution of ,,, for the Supercurrents in the Non-archimedean Frame,Chambert-Loir and Ducros introduced a theory of differential forms and real-valued currents on Berkovich spaces using the superforms on polyhedral complexes. In this paper we propose a resolution of the operator of de Rahm for currents defined in an affinoid domain of a space of type Berkovich which happens to be of Stein.
13#
發(fā)表于 2025-3-23 21:57:12 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:28 | 只看該作者
15#
發(fā)表于 2025-3-24 03:24:37 | 只看該作者
978-3-030-57338-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
16#
發(fā)表于 2025-3-24 07:38:46 | 只看該作者
Nonlinear Analysis, Geometry and Applications978-3-030-57336-2Series ISSN 2297-0215 Series E-ISSN 2297-024X
17#
發(fā)表于 2025-3-24 12:09:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:30:33 | 只看該作者
Null Controllability of a System of Degenerate Nonlinear Coupled Equations Derived from Population n type inequality for the adjoint system of an intermediate model. From this inequality, we derive our observability inequality. Next, by a fixed point argument, we prove the null controllability result with an internal control acting on a small subset of the domain.
19#
發(fā)表于 2025-3-24 19:05:52 | 只看該作者
20#
發(fā)表于 2025-3-24 23:55:07 | 只看該作者
Monotony and Comparison Principle in Non Autonomous Size Structured Models,rove in this paper some monotony properties of a class of general non linear non autonomous size(age)-structured population dynamic models. Our results are applied to an example in order to show how one can prove some global asymptotic properties by using comparison principle.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻城市| 车险| 邵阳市| 仙游县| 兰州市| 德保县| 眉山市| 揭西县| 石棉县| 江华| 乌兰察布市| 怀化市| 安龙县| 怀来县| 来凤县| 肥西县| 延长县| 洞口县| 彭阳县| 余姚市| 汤原县| 汾阳市| 张家川| 西林县| 柘城县| 新巴尔虎左旗| 荔波县| 资源县| 长宁区| 尼勒克县| 谢通门县| 鹤峰县| 革吉县| 皋兰县| 湾仔区| 芦溪县| 利辛县| 剑河县| 喀什市| 政和县| 洛川县|