找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis and Global Optimization; Themistocles M. Rassias,Panos M. Pardalos Book 2021 Springer Nature Switzerland AG 2021 nonlin

[復(fù)制鏈接]
樓主: Reagan
21#
發(fā)表于 2025-3-25 03:44:16 | 只看該作者
978-3-030-61734-9Springer Nature Switzerland AG 2021
22#
發(fā)表于 2025-3-25 09:01:56 | 只看該作者
23#
發(fā)表于 2025-3-25 11:58:52 | 只看該作者
Themistocles M. Rassias,Panos M. PardalosDiscusses aspects of nonlinear analysis in which optimization plays an important role.Studies topics which are applied to the study of optimization problems.Topical breadth will appeal to a wide reade
24#
發(fā)表于 2025-3-25 19:45:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:25:07 | 只看該作者
26#
發(fā)表于 2025-3-26 03:11:14 | 只看該作者
27#
發(fā)表于 2025-3-26 06:17:56 | 只看該作者
On the Approximation of Monotone Variational Inequalities in ,, Spaces with Probability Measure,ion of the functional approximation in .., with .?>?2, leads to a finite dimensional variational inequality whose structure is different from the one obtained in the case .?=?2, already treated in the literature. The proposed computational scheme is applied to the random traffic equilibrium problem with polynomial cost functions.
28#
發(fā)表于 2025-3-26 11:44:41 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:12 | 只看該作者
30#
發(fā)表于 2025-3-26 16:59:58 | 只看該作者
1931-6828 ization problems.Topical breadth will appeal to a wide reade.This contributed volume. .discusses aspects of nonlinear analysis in which optimization plays an important role, as well as topics which are applied to the study of optimization problems. Topics include set-valued analysis, mixed concave-c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝应县| 阿图什市| 建平县| 仁怀市| 英山县| 濮阳市| 大丰市| 石家庄市| 中山市| 延边| 南通市| 富源县| 利辛县| 黔江区| 阜南县| 通山县| 嵩明县| 朝阳区| 长垣县| 通道| 包头市| 溧阳市| 奉新县| 吉木萨尔县| 清丰县| 嫩江县| 宁海县| 仲巴县| 务川| 嘉峪关市| 交口县| 综艺| 青河县| 北宁市| 平潭县| 哈尔滨市| 泰兴市| 桦甸市| 通化市| 阿克| 灵台县|