找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncompact Lie Groups and Some of Their Applications; Elizabeth A. Tanner,Raj Wilson Book 1994 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: graphic
21#
發(fā)表于 2025-3-25 03:58:02 | 只看該作者
Weyl Group Actions on Lagrangian Cycles and Rossmann’s Formulacally defined ..-invariant symplectic structure, and thus carries a distinguished ..-invariant measure. Kirillov’s character formula — in those cases when it applies — expresses the irreducible unitary characters of .. as Fourier transforms of the distinguished measures on coadjoint orbits, which ar
22#
發(fā)表于 2025-3-25 09:50:36 | 只看該作者
23#
發(fā)表于 2025-3-25 12:32:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:30 | 只看該作者
Nilpotent Groups and Anharmonic Oscillators the quartic anharmonic oscillator is analyzed in detail and the relationship between the quartic anharmonic oscillator Hamiltonian and irreducible representations of Lie algebra elements of the nilpotent group is given. Scaling operators are used to partially determine the functional form of the ei
25#
發(fā)表于 2025-3-25 23:15:13 | 只看該作者
26#
發(fā)表于 2025-3-26 00:30:03 | 只看該作者
Basic Harmonic Analysis on Pseudo-Riemannian Symmetric SpacesWe give a survey of the present knowledge regarding basic questions in harmonic analysis on pseudo-Riemannian symmetric spaces . /., where . is a semisimple Lie group: The definition of the Fourier transform, the Plancherel formula, the inversion formula and the Paley-Wiener theorem.
27#
發(fā)表于 2025-3-26 05:17:15 | 只看該作者
28#
發(fā)表于 2025-3-26 09:55:47 | 只看該作者
Radon transform on halfplanes via group theoryConsider the halfplane . as a subset of . and the group . which acts transitively on . via ..
29#
發(fā)表于 2025-3-26 15:39:02 | 只看該作者
Analytic torsion and automorphic formsIn this note we prove a vanishing theorem for the analytic torsion of a locally symmetric space.
30#
發(fā)表于 2025-3-26 20:15:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利津县| 甘肃省| 太原市| 长武县| 民勤县| 雅江县| 金溪县| 西乌珠穆沁旗| 安化县| 西充县| 大渡口区| 内江市| 和平区| 巩义市| 手机| 神池县| 东安县| 甘德县| 南昌县| 麟游县| 长兴县| 赫章县| 延边| 安新县| 南召县| 萨嘎县| 应用必备| 栾川县| 军事| 峨山| 嘉兴市| 中宁县| 阳高县| 安新县| 石林| 东兴市| 大荔县| 丁青县| 固原市| 新竹县| 文安县|