找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Iwasawa Main Conjectures over Totally Real Fields; Münster, April 2011 John Coates,Peter Schneider,Otmar Venjakob Conference

[復(fù)制鏈接]
查看: 49845|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:52:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields
副標(biāo)題Münster, April 2011
編輯John Coates,Peter Schneider,Otmar Venjakob
視頻videohttp://file.papertrans.cn/668/667199/667199.mp4
概述Includes a self-contained and simplified proof of Kakde‘s main algebraic result, as well as introductory articles on related topics.Extremely useful for many years to come.Will almost certainly lead t
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Noncommutative Iwasawa Main Conjectures over Totally Real Fields; Münster, April 2011 John Coates,Peter Schneider,Otmar Venjakob Conference
描述The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed? in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde‘s proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially redu
出版日期Conference proceedings 2013
關(guān)鍵詞11R23, 11S40, 14H52, 14K22, 19B28; Iwasawa theory; K_1 of Iwasawa algebras; internal group logarithm; p-
版次1
doihttps://doi.org/10.1007/978-3-642-32199-3
isbn_softcover978-3-642-44335-0
isbn_ebook978-3-642-32199-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields影響因子(影響力)




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields影響因子(影響力)學(xué)科排名




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields網(wǎng)絡(luò)公開度




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields被引頻次




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields被引頻次學(xué)科排名




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields年度引用




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields年度引用學(xué)科排名




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields讀者反饋




書目名稱Noncommutative Iwasawa Main Conjectures over Totally Real Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:49:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:57:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:26 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:53 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/n/image/667199.jpg
7#
發(fā)表于 2025-3-22 17:07:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:02:03 | 只看該作者
9#
發(fā)表于 2025-3-23 02:23:25 | 只看該作者
Noncommutative Iwasawa Main Conjectures over Totally Real Fields978-3-642-32199-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
10#
發(fā)表于 2025-3-23 09:12:41 | 只看該作者
Reductions of the Main Conjecture,The main goal of this article is to discuss the relevant background needed to state the noncommutative main conjecture for certain totally real .-adic Lie extensions, and to make the important reduction to the case when the Galois group of the .-adic Lie extension is of dimension one and pro-..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江县| 金寨县| 南涧| 清水河县| 梅河口市| 固原市| 泰和县| 绍兴市| 嘉定区| 梨树县| 顺昌县| 筠连县| 北辰区| 枝江市| 临泽县| 尉氏县| 香河县| 济源市| 扎囊县| 葫芦岛市| 资兴市| 修水县| 佛冈县| 河北区| 贵溪市| 博白县| 晴隆县| 巩义市| 紫云| 赞皇县| 芦溪县| 洛阳市| 慈利县| 封丘县| 青岛市| 普安县| 合山市| 桓台县| 宁津县| 莲花县| 大丰市|