找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology

[復(fù)制鏈接]
查看: 37288|回復(fù): 65
樓主
發(fā)表于 2025-3-21 16:35:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Noncommutative Harmonic Analysis
副標(biāo)題In Honor of Jacques
編輯Patrick Delorme,Michèle Vergne
視頻videohttp://file.papertrans.cn/668/667197/667197.mp4
概述International experts on harmonic analysis have contributed to this book.Explores Kontsevich quantization, which has appeared in recent years as a powerful tool
叢書(shū)名稱(chēng)Progress in Mathematics
圖書(shū)封面Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques  Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology
描述.This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie groups, and especially the determination of the unitary dual, the problem of geometric realizations of representations, harmonic analysis on reductive symmetric spaces, the study of automorphic forms, and results in harmonic analysis that apply to the Langlands program. ...General Lie groups are also discussed, particularly from the orbit method perspective, which has been a constant source of inspiration for both the theory of reductive Lie groups and for general Lie groups. Also covered is Kontsevich quantization, which has appeared in recent years as a powerful tool. ..Contributors: V. Baldoni-Silva; D. Barbasch; P. Bieliavsky; N. Bopp; A. Bouaziz; P. Delorme; P. Harinck; A. Hersant; M.S. Khalgui; A.W. Knapp; B. Kostant; J. Kuttler; M. Libine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M.
出版日期Book 2004
關(guān)鍵詞Dolbeault cohomology; Group representation; calculus; cohomology; differential equation; harmonic analysi
版次1
doihttps://doi.org/10.1007/978-0-8176-8204-0
isbn_softcover978-1-4612-6489-7
isbn_ebook978-0-8176-8204-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 2004
The information of publication is updating

書(shū)目名稱(chēng)Noncommutative Harmonic Analysis影響因子(影響力)




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis被引頻次




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis年度引用




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis讀者反饋




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:48:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:17 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:02 | 只看該作者
A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil thl terminology) is replaced by an arbitrary irreducible representation τ of .. For the generalization we establish the existence of a unique minimal representation of g associated to τ..Another application (3) yields a noncompact analogue of the Borel-Weil theorem. For a suitable semisimple Lie group
5#
發(fā)表于 2025-3-22 10:00:47 | 只看該作者
A localization argument for characters of reductive Lie groups: an introduction and examples,ars in [L]..I have made every effort to present this article so that it is widely accessible. Also, although characteristic cycles of sheaves is mentioned, I do not assume that the reader is familiar with this notion.
6#
發(fā)表于 2025-3-22 13:45:46 | 只看該作者
7#
發(fā)表于 2025-3-22 21:05:41 | 只看該作者
0743-1643 ine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M. 978-1-4612-6489-7978-0-8176-8204-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-22 22:10:42 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/n/image/667197.jpg
9#
發(fā)表于 2025-3-23 04:35:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:06:26 | 只看該作者
Patrick Delorme,Michèle VergneInternational experts on harmonic analysis have contributed to this book.Explores Kontsevich quantization, which has appeared in recent years as a powerful tool
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜江市| 容城县| 乐山市| 上思县| 南通市| 即墨市| 丹阳市| 忻城县| 郎溪县| 衡南县| 西贡区| 依安县| 来安县| 九江县| 磐石市| 迁西县| 阿合奇县| 东城区| 云浮市| 通辽市| 虹口区| 凉城县| 扎鲁特旗| 理塘县| 循化| 永修县| 新泰市| 新野县| 桦南县| 海林市| 阆中市| 霍山县| 宜都市| 新平| 临海市| 漳平市| 新民市| 乌兰县| 富川| 龙泉市| 文安县|