找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Algebraic Geometry and Representations of Quantized Algebras; Alexander L. Rosenberg Book 1995 Springer Science+Business Me

[復(fù)制鏈接]
樓主: 海市蜃樓
11#
發(fā)表于 2025-3-23 09:42:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:24:04 | 只看該作者
Noncommutative Local Algebra, to be excellent in commutative and graded-commutative geometries. But even the simplest non-affine spaces that come into view in the non(graded)commutative case — analogs of quasi-affine schemes and projective spectra — very rarely can be covered with open affine subschemes.
13#
發(fā)表于 2025-3-23 21:37:59 | 只看該作者
Skew PBW monads and representations,. A skew PBW (Poincaré-Birkhoff-Witt) ring related to the map . is an associative ring .{.} which contains . as a subring and is a free right .-module with a basis {.. | . ∈ G} such that .. = ..(.).. for any . ∈ G and all . ∈ .. The symbol . stays for the multiplication table: .... = Σ... (. | .). W
14#
發(fā)表于 2025-3-24 00:48:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:54:39 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:50:52 | 只看該作者
mples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern 978-90-481-4577-5978-94-015-8430-2
18#
發(fā)表于 2025-3-24 18:31:11 | 只看該作者
Noncommutative Algebraic Geometry and Representations of Quantized Algebras
19#
發(fā)表于 2025-3-24 20:49:16 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:08 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乾安县| 安仁县| 新营市| 文成县| 确山县| 安丘市| 锡林浩特市| 托里县| 琼海市| 资溪县| 吉林省| 陇南市| 溆浦县| 斗六市| 连城县| 伊金霍洛旗| 新宁县| 论坛| 蒙山县| 禹城市| 镇宁| 无棣县| 宜城市| 班玛县| 晋中市| 滨州市| 通山县| 苍山县| 肥东县| 增城市| 上思县| 社旗县| 阳山县| 榆社县| 全椒县| 九江县| 文昌市| 蒙阴县| 石台县| 大埔区| 乡宁县|