找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncausal Stochastic Calculus; Shigeyoshi Ogawa Book 2017 Springer Japan KK 2017 Noncausal.Stochastic Calculus.random variable.stochastic

[復(fù)制鏈接]
查看: 12126|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:12:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Noncausal Stochastic Calculus
編輯Shigeyoshi Ogawa
視頻videohttp://file.papertrans.cn/668/667176/667176.mp4
概述Is the first book on a stochastic calculus of noncausal nature based on the noncausal stochastic integral introduced by the author in 1979.Begins with the study of fundamental properties of the noncau
圖書(shū)封面Titlebook: Noncausal Stochastic Calculus;  Shigeyoshi Ogawa Book 2017 Springer Japan KK 2017 Noncausal.Stochastic Calculus.random variable.stochastic
描述This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi It?. As is generally known, It? Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale..The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979..After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well..
出版日期Book 2017
關(guān)鍵詞Noncausal; Stochastic Calculus; random variable; stochastic derivative; principle of causality
版次1
doihttps://doi.org/10.1007/978-4-431-56576-5
isbn_softcover978-4-431-56825-4
isbn_ebook978-4-431-56576-5
copyrightSpringer Japan KK 2017
The information of publication is updating

書(shū)目名稱Noncausal Stochastic Calculus影響因子(影響力)




書(shū)目名稱Noncausal Stochastic Calculus影響因子(影響力)學(xué)科排名




書(shū)目名稱Noncausal Stochastic Calculus網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Noncausal Stochastic Calculus網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Noncausal Stochastic Calculus被引頻次




書(shū)目名稱Noncausal Stochastic Calculus被引頻次學(xué)科排名




書(shū)目名稱Noncausal Stochastic Calculus年度引用




書(shū)目名稱Noncausal Stochastic Calculus年度引用學(xué)科排名




書(shū)目名稱Noncausal Stochastic Calculus讀者反饋




書(shū)目名稱Noncausal Stochastic Calculus讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:06:07 | 只看該作者
Book 2017ns such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well..
板凳
發(fā)表于 2025-3-22 00:44:48 | 只看該作者
地板
發(fā)表于 2025-3-22 06:19:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:51 | 只看該作者
Shigeyoshi OgawaIs the first book on a stochastic calculus of noncausal nature based on the noncausal stochastic integral introduced by the author in 1979.Begins with the study of fundamental properties of the noncau
6#
發(fā)表于 2025-3-22 14:22:15 | 只看該作者
Noncausal Calculus,We have seen in the previous chapter that the theory of It? calculus was established after the introduction of the stochastic integral called the It? integral and that this . integral has two important features as follows.
7#
發(fā)表于 2025-3-22 17:41:00 | 只看該作者
Brownian Particle Equation,The Brownian particle equation, which we call . for short, is an SPDE (stochastic partial differential equation) of the first order including the white noise . as coefficients at least in its principal part.
8#
發(fā)表于 2025-3-23 01:02:59 | 只看該作者
Noncausal SIE,A boundary value problem of an ordinary differential equation in a randomly disturbed situation would lead us to a stochastic integral equation of Fredholm type. In this chapter we study such an SIE in the framework of our noncausal calculus.
9#
發(fā)表于 2025-3-23 01:52:37 | 只看該作者
Stochastic Fourier Transformation,We have seen in the previous chapter that the stochastic Fourier transformation (SFT) and the stochastic Fourier coefficients (SFCs) serve as effective tools for the study of the noncausal SIE of Fredholm type. In this chapter we shall study basic properties of these SFT and SFC.
10#
發(fā)表于 2025-3-23 07:34:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 10:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富顺县| 玉环县| 中阳县| 嘉义市| 贡觉县| 静乐县| 莱阳市| 桃源县| 闸北区| 通河县| 通化县| 连南| 西吉县| 景洪市| 平塘县| 治县。| 临清市| 宁海县| 浦江县| 麟游县| 德昌县| 博兴县| 拉萨市| 盐山县| 沙田区| 蓝山县| 辽宁省| 阿瓦提县| 从江县| 通州市| 囊谦县| 南陵县| 通山县| 朝阳县| 光山县| 丰宁| 泰顺县| 正阳县| 独山县| 沐川县| 襄垣县|