找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control; Russell Johnson,Rafael Obaya,Roberta Fabbri Book 2016

[復(fù)制鏈接]
樓主: Manipulate
21#
發(fā)表于 2025-3-25 06:05:58 | 只看該作者
22#
發(fā)表于 2025-3-25 07:57:49 | 只看該作者
23#
發(fā)表于 2025-3-25 12:06:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:06:48 | 只看該作者
25#
發(fā)表于 2025-3-25 20:34:43 | 只看該作者
Book 2016uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the co
26#
發(fā)表于 2025-3-26 00:33:26 | 只看該作者
The Rotation Number and the Lyapunov Index for Real Nonautonomous Linear Hamiltonian Systems,f the index with respect to the coefficient matrix. In this chapter, and also in those that follow, the general analysis includes that of the dynamics given by a nonautonomous .-dimensional second order linear Schr?dinger equation, which can always be written as a 2.-dimensional linear Hamiltonian system.
27#
發(fā)表于 2025-3-26 08:13:13 | 只看該作者
28#
發(fā)表于 2025-3-26 12:21:38 | 只看該作者
29#
發(fā)表于 2025-3-26 16:31:33 | 只看該作者
The Floquet Coefficient for Nonautonomous Linear Hamiltonian Systems: Atkinson Problems,ite matrix-valued function satisfying an Atkinson nondegeneracy condition. Such a condition ensures the exponential dichotomy property for ., as well as the existence of the corresponding Weyl functions, which are determined by the initial data of the solutions bounded as .. These properties can be
30#
發(fā)表于 2025-3-26 19:10:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂阳县| 高淳县| 张家川| 绍兴县| 嘉义市| 子长县| 太谷县| 沭阳县| 临西县| 荃湾区| 故城县| 泽州县| 永安市| 神木县| 兴宁市| 新竹县| 海淀区| 湖南省| 通州区| 漾濞| 明水县| 景泰县| 南乐县| 吉木乃县| 舞钢市| 桑日县| 沂南县| 越西县| 泽普县| 建昌县| 龙南县| 新宁县| 安化县| 汉寿县| 凌海市| 庐江县| 渭源县| 和硕县| 晋城| 丰镇市| 木兰县|