找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control; Russell Johnson,Rafael Obaya,Roberta Fabbri Book 2016

[復(fù)制鏈接]
樓主: Manipulate
11#
發(fā)表于 2025-3-23 10:57:30 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:03 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:17 | 只看該作者
The Weyl Functions,ze to the n-dimensional Schr?dinger equation a famous inequality (obtained in the scalar case by Moser (1980) and by Deift and Simon (1983)) involving the rotation number and its derivative. The chapter ends with a description of a scenario in which the convergence of the Weyl functions is uniform.
14#
發(fā)表于 2025-3-24 00:14:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:29:44 | 只看該作者
,Nonautonomous Control Theory: Linear Regulator Problem and the Kalman–Bucy Filter,miltonian systems are used to produce direct proofs of some basic results, including the asymptotic limit and the stability properties of the error covariance matrix, and the Hurwitz property at . of the error propagation system.
16#
發(fā)表于 2025-3-24 07:17:07 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:01 | 只看該作者
Nonautonomous Control Theory: Linear-Quadratic Dissipative Control Processes, occurrence of uniform weak disconjugacy permits one to establish some weaker equivalences, formulated in terms of one of the principal functions. Some dynamical conditions ensuring the dissipativity of the linear-quadratic problem are also given without assuming the controllability property. The op
18#
發(fā)表于 2025-3-24 17:29:39 | 只看該作者
Book 2016 matrices, exponential dichotomy, and weak disconjugacy, a fundamentalrole is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including
19#
發(fā)表于 2025-3-24 19:55:32 | 只看該作者
20#
發(fā)表于 2025-3-24 23:19:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴文县| 武邑县| 延长县| 五台县| 东乡族自治县| 太仓市| 宜昌市| 汤阴县| 巴里| 古蔺县| 松阳县| 琼结县| 枣阳市| 景泰县| 阿拉尔市| 辽宁省| 茂名市| 上杭县| 石嘴山市| 平谷区| 璧山县| 梁河县| 安义县| 汝州市| 巨野县| 天柱县| 城市| 临沭县| 凌云县| 孝义市| 阿拉尔市| 涿鹿县| 衡南县| 海口市| 凭祥市| 湖州市| 屏南县| 毕节市| 于田县| 环江| 德安县|