找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonarchimedean and Tropical Geometry; Matthew Baker,Sam Payne Conference proceedings 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 10:26:06 | 只看該作者
Berkovich Skeleta and Birational Geometry,nt series and the birational geometry of one-parameter degenerations of smooth projective varieties. The central objects in our theory are the . and the . of the degeneration. We tried to keep the text self-contained, so that it can serve as an introduction to Berkovich geometry for birational geometers.
12#
發(fā)表于 2025-3-23 15:09:27 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:41 | 只看該作者
Forms and Currents on the Analytification of an Algebraic Variety (After Chambert-Loir and Ducros),Chambert-Loir and Ducros have recently introduced real differential forms and currents on Berkovich spaces. In these notes, we survey this new theory and we will compare it with tropical algebraic geometry.
14#
發(fā)表于 2025-3-23 23:00:10 | 只看該作者
15#
發(fā)表于 2025-3-24 06:09:28 | 只看該作者
Degeneration of Linear Series from the Tropical Point of View and Applications,We discuss linear series on tropical curves and their relation to classical algebraic geometry, describe the main techniques of the subject, and survey some of the recent major developments in the field, with an emphasis on applications to problems in Brill–Noether theory and arithmetic geometry.
16#
發(fā)表于 2025-3-24 08:37:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:00:57 | 只看該作者
https://doi.org/10.1007/978-3-319-30945-3Tropical Geometry; Nonarchimedean Analysis; algebraic geometry; Berkovich Spaces; Hodge Theory; Huber The
18#
發(fā)表于 2025-3-24 17:36:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:12:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 宜春市| 鄂伦春自治旗| 左云县| 开远市| 武清区| 淮南市| 黄石市| 神池县| 东乡族自治县| 凌云县| 砀山县| 白沙| 岳阳市| 抚宁县| 始兴县| 克什克腾旗| 冷水江市| 张家港市| 武乡县| 光山县| 抚宁县| 黄骅市| 石首市| 合肥市| 四川省| 丰镇市| 繁昌县| 赤峰市| 杨浦区| 永川市| 宜昌市| 郸城县| 怀化市| 浮山县| 怀来县| 商河县| 松滋市| 修水县| 连城县| 湘阴县|