找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonarchimedean Functional Analysis; Peter Schneider Book 2002 Springer-Verlag Berlin Heidelberg 2002 bounded mean oscillation.calculus.fun

[復(fù)制鏈接]
查看: 23932|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:28:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonarchimedean Functional Analysis
編輯Peter Schneider
視頻videohttp://file.papertrans.cn/668/667165/667165.mp4
概述Covers all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields.Gives the foundations of the theory and also develops the more advanced topics.Concise introdu
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Nonarchimedean Functional Analysis;  Peter Schneider Book 2002 Springer-Verlag Berlin Heidelberg 2002 bounded mean oscillation.calculus.fun
描述This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that cour
出版日期Book 2002
關(guān)鍵詞bounded mean oscillation; calculus; functional analysis; locally convex vector space; nonarchimedean; num
版次1
doihttps://doi.org/10.1007/978-3-662-04728-6
isbn_softcover978-3-642-07640-4
isbn_ebook978-3-662-04728-6Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書目名稱Nonarchimedean Functional Analysis影響因子(影響力)




書目名稱Nonarchimedean Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Nonarchimedean Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Nonarchimedean Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonarchimedean Functional Analysis被引頻次




書目名稱Nonarchimedean Functional Analysis被引頻次學(xué)科排名




書目名稱Nonarchimedean Functional Analysis年度引用




書目名稱Nonarchimedean Functional Analysis年度引用學(xué)科排名




書目名稱Nonarchimedean Functional Analysis讀者反饋




書目名稱Nonarchimedean Functional Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:55:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:21:45 | 只看該作者
Peter Schneiders in basic biological understanding into a practical clinica.Melanoma is an increasingly important public health problem. Although the cause of most malignant melanomas – over-exposure to ultraviolet light – is well known, effective treatment has remained challenging..The past several years have bee
地板
發(fā)表于 2025-3-22 05:37:01 | 只看該作者
5#
發(fā)表于 2025-3-22 09:01:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:23:54 | 只看該作者
7#
發(fā)表于 2025-3-22 19:46:26 | 只看該作者
Foundations,d review of nonarchimedean fields. The main objective of functional analysis is the investigation of a certain class of topological vector spaces over a fixed nonarchimedean field .. This is the class of locally convex vector spaces. The more traditional analytic point of view characterizes locally
8#
發(fā)表于 2025-3-22 21:14:04 | 只看該作者
9#
發(fā)表于 2025-3-23 01:36:30 | 只看該作者
Duality Theory,tion into locally convex vector spaces. As explained in§12 the role of compact and precompact subsets is taken over by c-compact and compactoid .-sub-modules, respectively, in a locally convex .-vector space. Roughly speaking these are .-linear versions of the former topological properties. The conc
10#
發(fā)表于 2025-3-23 08:07:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 14:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦城县| 莱西市| 繁昌县| 柳林县| 无棣县| 周宁县| 林甸县| 青铜峡市| 辽阳县| 雷波县| 合山市| 浙江省| 仁化县| 肇东市| 任丘市| 保康县| 新疆| 富宁县| 和政县| 武定县| 霞浦县| 冀州市| 武乡县| 金川县| 宁河县| 兴安县| 五家渠市| 南乐县| 武邑县| 四平市| 县级市| 房山区| 当阳市| 兴隆县| 綦江县| 永嘉县| 庆元县| 湖南省| 彭泽县| 固镇县| 宿松县|