找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-metrisable Manifolds; David Gauld Book 2014 Springer Science+Business Media Singapore 2014 Bagpipe Theorem.Brown’s Monotone Union Theo

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:37:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:36:41 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:32 | 只看該作者
d for other applications. Parameters for nuclear levels of stable nuclei have been published in the Volumes I/16B, I/18A, B, C, and in I/19A1, A2. In the Volumes I/19A, B further data obtained from transfer reactions are presented. Volume I/19C contains the data of unstable nuclei far from the stabi
24#
發(fā)表于 2025-3-25 16:25:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:16 | 只看該作者
David Gauld tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of t
26#
發(fā)表于 2025-3-26 03:53:02 | 只看該作者
27#
發(fā)表于 2025-3-26 07:49:35 | 只看該作者
28#
發(fā)表于 2025-3-26 11:14:23 | 只看該作者
29#
發(fā)表于 2025-3-26 16:27:53 | 只看該作者
Type I Manifolds and the Bagpipe Theorem,f Type I and is countably compact. Nyikos then went on to prove his amazing Bagpipe Theorem which describes the structure of .-bounded surfaces. We present a proof of Nyikos’s Bagpipe Theorem. We also show that there are . many .-bounded, connected surfaces: contrast this with the compact, connected surfaces of which there are only . many.
30#
發(fā)表于 2025-3-26 18:20:35 | 只看該作者
,Homeomorphisms and Dynamics on?Non-metrisable Manifolds,ly to powers of the long line where we find the situation to be significantly different from the situation for powers of the real line: points where at least two coordinates agree combine to form barriers to the behaviour of homeomorphisms. We also display a surface whose group of homeomorphisms modulo isotopy is isomorphic to ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎鲁特旗| 枣阳市| 义马市| 裕民县| 营山县| 故城县| 逊克县| 芦山县| 周口市| 红桥区| 南投市| 仲巴县| 汶上县| 巢湖市| 莲花县| 武清区| 蒲江县| 溧水县| 玉龙| 赤水市| 安顺市| 永清县| 江口县| 阿拉善左旗| 台北市| 延边| 台前县| 聂拉木县| 临泉县| 陕西省| 米脂县| 商都县| 当阳市| 雅江县| 葫芦岛市| 左贡县| 肇源县| 德江县| 阿瓦提县| 民勤县| 侯马市|