找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-locality and Modality; Tomasz Placek,Jeremy Butterfield Book 2002 Springer Science+Business Media Dordrecht 2002 information.logic.mod

[復(fù)制鏈接]
樓主: JAZZ
11#
發(fā)表于 2025-3-23 11:04:15 | 只看該作者
EPR-Bell Tests with Unsharp Observables and Relativistic Quantum Measurementf positive operator valued measures. It is shown how Bell’s inequalities can be satisfied if the degree of unsharpness in the observables involved is sufficiently large. The EPR contradiction between the assumptions of (usharp) reality, locality and the validity of quantum mechanics is resolved by m
12#
發(fā)表于 2025-3-23 15:51:37 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:03 | 只看該作者
The Bell Phenomenon in a Probabilistic Approachf the usual class of random variables. Inside this framework a mathematical fact (called Bell phenomenon) is discussed which contains, as particular instances, the violations of Bell’s inequalities. A classical extension of quantum mechanics in the operational probability theory is also discussed.
14#
發(fā)表于 2025-3-23 22:50:57 | 只看該作者
15#
發(fā)表于 2025-3-24 02:38:47 | 只看該作者
16#
發(fā)表于 2025-3-24 09:58:48 | 只看該作者
Tomasz Placek,Jeremy ButterfieldIncludes supplementary material:
17#
發(fā)表于 2025-3-24 11:26:03 | 只看該作者
On Fine’s Interpretation of Quantum Mechanics: GHZ Experimentnsiderably successful in the resolution of paradoxes related with various spin correlation experiments. In order to illustrate this fact, a local hidden variable theory is shown for the GHZ experiment.
18#
發(fā)表于 2025-3-24 17:32:19 | 只看該作者
The Bell Phenomenon in a Probabilistic Approachf the usual class of random variables. Inside this framework a mathematical fact (called Bell phenomenon) is discussed which contains, as particular instances, the violations of Bell’s inequalities. A classical extension of quantum mechanics in the operational probability theory is also discussed.
19#
發(fā)表于 2025-3-24 21:52:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:41:59 | 只看該作者
NATO Science Series II: Mathematics, Physics and Chemistryhttp://image.papertrans.cn/n/image/667124.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常德市| 万州区| 修水县| 平江县| 内黄县| 习水县| 兴仁县| 黎川县| 卢龙县| 奎屯市| 新竹市| 定南县| 黄龙县| 鹰潭市| 盐源县| 渑池县| 定州市| 金沙县| 公主岭市| 石泉县| 邹平县| 称多县| 宿松县| 年辖:市辖区| 斗六市| 上虞市| 扶沟县| 白朗县| 南皮县| 泗阳县| 汤阴县| 新蔡县| 秭归县| 高唐县| 冷水江市| 佛教| 罗平县| 西昌市| 民乐县| 定结县| 和田市|