找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-commutative and Non-associative Algebra and Analysis Structures; SPAS 2019, V?ster?s, Sergei Silvestrov,Anatoliy Malyarenko Conference

[復制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 12:47:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:19 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:32 | 只看該作者
Network Rewriting Utility Description,on—more precisely to systematically discover non-obvious consequences of the axioms for various algebraic structures. In particular this program can cope with algebraic structures, such as bi- and Hopf algebras, that mix classical operations with co-operations.
14#
發(fā)表于 2025-3-23 23:22:41 | 只看該作者
,Double Constructions of?BiHom-Frobenius Algebras, symmetric bilinear form . where . and . are the products defined on . and . respectively, and . and . stand for the corresponding algebra homomorphisms. Such a double construction, also called Hom-Frobenius algebra, is interpreted in terms of an infinitesimal Hom-bialgebra. The same procedure is ap
15#
發(fā)表于 2025-3-24 02:52:23 | 只看該作者
,On Classification of?(n+1)-Dimensional n-Hom-Lie Algebras with?Nilpotent Twisting Maps,y classify them. Some specific properties of .-dimensional .-Hom-Lie algebra such as nilpotence, solvability, center, ideals, derived series and central descending series are studied, the Hom-Nambu-Filippov identity for various classes of twisting maps in dimension . is considered, and systems of eq
16#
發(fā)表于 2025-3-24 07:58:21 | 只看該作者
2194-1009 luding many open problems.The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, V?ster?s, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and it
17#
發(fā)表于 2025-3-24 12:59:52 | 只看該作者
An Application of Twisted Group Rings in Secure Group Communications,rmation leakage as the number of users grows. Moreover we show that further rekeying messages provide forward and backward security, that means that no former or future user in a communication group can get information on previous or new future keys.
18#
發(fā)表于 2025-3-24 17:28:45 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:31 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉定区| 文山县| 岳普湖县| 疏勒县| 潜山县| 习水县| 临朐县| 宁国市| 临海市| 屯门区| 泾川县| 宣武区| 河北区| 辉县市| 赣州市| 白沙| 崇义县| 广平县| 理塘县| 石景山区| 兴义市| 玛纳斯县| 林州市| 丹巴县| 崇信县| 辽阳市| 达州市| 峨边| 博乐市| 新巴尔虎右旗| 灵丘县| 桂阳县| 新龙县| 廉江市| 平塘县| 江口县| 玉溪市| 澄城县| 和平区| 手机| 河津市|