找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-commutative and Non-associative Algebra and Analysis Structures; SPAS 2019, V?ster?s, Sergei Silvestrov,Anatoliy Malyarenko Conference

[復(fù)制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 12:47:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:19 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:32 | 只看該作者
Network Rewriting Utility Description,on—more precisely to systematically discover non-obvious consequences of the axioms for various algebraic structures. In particular this program can cope with algebraic structures, such as bi- and Hopf algebras, that mix classical operations with co-operations.
14#
發(fā)表于 2025-3-23 23:22:41 | 只看該作者
,Double Constructions of?BiHom-Frobenius Algebras, symmetric bilinear form . where . and . are the products defined on . and . respectively, and . and . stand for the corresponding algebra homomorphisms. Such a double construction, also called Hom-Frobenius algebra, is interpreted in terms of an infinitesimal Hom-bialgebra. The same procedure is ap
15#
發(fā)表于 2025-3-24 02:52:23 | 只看該作者
,On Classification of?(n+1)-Dimensional n-Hom-Lie Algebras with?Nilpotent Twisting Maps,y classify them. Some specific properties of .-dimensional .-Hom-Lie algebra such as nilpotence, solvability, center, ideals, derived series and central descending series are studied, the Hom-Nambu-Filippov identity for various classes of twisting maps in dimension . is considered, and systems of eq
16#
發(fā)表于 2025-3-24 07:58:21 | 只看該作者
2194-1009 luding many open problems.The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, V?ster?s, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and it
17#
發(fā)表于 2025-3-24 12:59:52 | 只看該作者
An Application of Twisted Group Rings in Secure Group Communications,rmation leakage as the number of users grows. Moreover we show that further rekeying messages provide forward and backward security, that means that no former or future user in a communication group can get information on previous or new future keys.
18#
發(fā)表于 2025-3-24 17:28:45 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潢川县| 和田市| 太白县| 丹巴县| 师宗县| 焉耆| 沁阳市| 遵义县| 德清县| 金溪县| 枞阳县| 清原| 望城县| 温泉县| 读书| 贵港市| 运城市| 韶山市| 玛曲县| 铜山县| 阳春市| 嵩明县| 崇信县| 东台市| 隆回县| 中江县| 金平| 大安市| 吉安市| 通州市| 巨鹿县| 云和县| 宁远县| 宣威市| 南昌市| 乐昌市| 前郭尔| 商洛市| 黔西县| 徐闻县| 和龙市|