找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Representational Theory and the Creative Arts; Candice P. Boyd,Christian Edwardes Book 2019 The Editor(s) (if applicable) and The Auth

[復制鏈接]
樓主: 粗略
51#
發(fā)表于 2025-3-30 09:02:53 | 只看該作者
practitioners in the creative arts and, across its four sections, demonstrates the potential for non-representational theory to bring cultural geography and contemporary art closer than ever before..978-981-13-5749-7
52#
發(fā)表于 2025-3-30 16:02:17 | 只看該作者
Sarah Bennett:.Ce résultat est à rapprocher de celui de J.J. Kohn dans (14) où aucune hypothèse sur le rang de la forme de Lévi n‘est faite mais où l‘on suppose qu‘elle est diagonable localement..Dans un article récent (5), David Catlin a établi qu‘à un point de sous-ellipticité les ordres de contact avec δΩ des
53#
發(fā)表于 2025-3-30 16:44:45 | 只看該作者
54#
發(fā)表于 2025-3-30 21:12:02 | 只看該作者
Annie Lovejoy:.Ce résultat est à rapprocher de celui de J.J. Kohn dans (14) où aucune hypothèse sur le rang de la forme de Lévi n‘est faite mais où l‘on suppose qu‘elle est diagonable localement..Dans un article récent (5), David Catlin a établi qu‘à un point de sous-ellipticité les ordres de contact avec δΩ des
55#
發(fā)表于 2025-3-31 02:47:32 | 只看該作者
56#
發(fā)表于 2025-3-31 07:34:39 | 只看該作者
Candice P. Boyd,with Yan Yang,Juana Beltrán,Clinton Green,Jordan White,Carmen Chan Schoenborn,Elnaz :.Ce résultat est à rapprocher de celui de J.J. Kohn dans (14) où aucune hypothèse sur le rang de la forme de Lévi n‘est faite mais où l‘on suppose qu‘elle est diagonable localement..Dans un article récent (5), David Catlin a établi qu‘à un point de sous-ellipticité les ordres de contact avec δΩ des
57#
發(fā)表于 2025-3-31 13:10:18 | 只看該作者
:.Ce résultat est à rapprocher de celui de J.J. Kohn dans (14) où aucune hypothèse sur le rang de la forme de Lévi n‘est faite mais où l‘on suppose qu‘elle est diagonable localement..Dans un article récent (5), David Catlin a établi qu‘à un point de sous-ellipticité les ordres de contact avec δΩ des
58#
發(fā)表于 2025-3-31 15:27:40 | 只看該作者
59#
發(fā)表于 2025-3-31 19:57:07 | 只看該作者
60#
發(fā)表于 2025-3-31 23:21:04 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 15:13
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西安市| 洪湖市| 长治市| 松潘县| 宁津县| 建德市| 洞头县| 黄大仙区| 西乌珠穆沁旗| 灵宝市| 平谷区| 错那县| 海宁市| 康定县| 阿合奇县| 宝坻区| 临沭县| 开远市| 东台市| 汉川市| 铁岭县| 忻城县| 于田县| 宁武县| 界首市| 崇左市| 福贡县| 红原县| 呈贡县| 吴堡县| 鹿泉市| 镇赉县| 友谊县| 建平县| 苍南县| 张家港市| 饶平县| 定安县| 石城县| 远安县| 海盐县|