找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Euclidean Laguerre Geometry and Incircular Nets; Alexander I. Bobenko,Carl O.R. Lutz,Jan Techter Book 2021 The Editor(s) (if applicabl

[復(fù)制鏈接]
查看: 7153|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:26:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets
編輯Alexander I. Bobenko,Carl O.R. Lutz,Jan Techter
視頻videohttp://file.papertrans.cn/667/666902/666902.mp4
概述The first systematic introduction to non-Euclidean Laguerre geometry in the literature.Demonstrates all features of Laguerre geometry in terms of one recent application: checkerboard incircular nets.B
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Non-Euclidean Laguerre Geometry and Incircular Nets;  Alexander I. Bobenko,Carl O.R. Lutz,Jan Techter Book 2021 The Editor(s) (if applicabl
描述This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre?geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the?example of checkerboard incircular nets..Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets..
出版日期Book 2021
關(guān)鍵詞Laguerre geometry; M?bius geometry; Lie geometry; projective geometry; spherical geometry; hyperbolic geo
版次1
doihttps://doi.org/10.1007/978-3-030-81847-0
isbn_softcover978-3-030-81846-3
isbn_ebook978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets影響因子(影響力)




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets影響因子(影響力)學科排名




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets網(wǎng)絡(luò)公開度




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets網(wǎng)絡(luò)公開度學科排名




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets被引頻次




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets被引頻次學科排名




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets年度引用




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets年度引用學科排名




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets讀者反饋




書目名稱Non-Euclidean Laguerre Geometry and Incircular Nets讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:48 | 只看該作者
Non-Euclidean Laguerre Geometry,The primary objects in . are points on ., which yield a double cover of the points in hyperbolic/elliptic space, and spheres, which yield a double cover of the spheres in hyperbolic/elliptic space. The primary incidence between these objects is ..
板凳
發(fā)表于 2025-3-22 03:11:17 | 只看該作者
Lie Geometry,M?bius geometry (signature ., see Sect. .), hyperbolic Laguerre geometry (signature (.,?2), see Sect. .), elliptic Laguerre geometry (signature ., see Sect. .), as well as Euclidean Laguerre geometry (signature (.,?1,?1), see Sect. A.4) can all be lifted to . (signature .) using the methods from Chaps. . and ..
地板
發(fā)表于 2025-3-22 08:03:34 | 只看該作者
Two-Dimensional Laguerre Geometry,egins in Chap.?.. We first introduce the most basic concepts of these geometries in the Euclidean plane and then turn to the elliptic and hyperbolic plane. The intention here is to enable the reader to quickly get a glimpse of these geometries without diving into the details.
5#
發(fā)表于 2025-3-22 11:38:51 | 只看該作者
Cayley-Klein Spaces,eSitter, and elliptic space can be obtained by using a quadric to induce the corresponding metric [Kle1928]. In this section we introduce the corresponding general notion of . and their groups of ., see, e.g., [Kle1928, Bla1954, Gie1982]. We put a particular emphasis on the description of hyperplanes, hyperspheres, and their mutual relations.
6#
發(fā)表于 2025-3-22 16:31:45 | 只看該作者
978-3-030-81846-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
7#
發(fā)表于 2025-3-22 19:04:05 | 只看該作者
Non-Euclidean Laguerre Geometry and Incircular Nets978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
8#
發(fā)表于 2025-3-23 00:03:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:42 | 只看該作者
https://doi.org/10.1007/978-3-030-81847-0Laguerre geometry; M?bius geometry; Lie geometry; projective geometry; spherical geometry; hyperbolic geo
10#
發(fā)表于 2025-3-23 06:56:22 | 只看該作者
Alexander I. Bobenko,Carl O.R. Lutz,Jan TechterThe first systematic introduction to non-Euclidean Laguerre geometry in the literature.Demonstrates all features of Laguerre geometry in terms of one recent application: checkerboard incircular nets.B
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗田县| 剑川县| 米林县| 沂源县| 阿勒泰市| 青田县| 高阳县| 新化县| 广汉市| 乌兰浩特市| 辛集市| 武安市| 吉木乃县| 建宁县| 嵊泗县| 本溪市| 清苑县| 汉沽区| 沙湾县| 浪卡子县| 利川市| 嘉定区| 赤峰市| 育儿| 佛坪县| 确山县| 富裕县| 富蕴县| 隆尧县| 从江县| 宜阳县| 图木舒克市| 江安县| 土默特右旗| 安远县| 安宁市| 海安县| 洛浦县| 大余县| 福建省| 大荔县|