找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Commutative Harmonic Analysis and Lie Groups; Proceedings of the I Jacques Carmona,Patrick Delorme,M.I.T. Conference proceedings 1987 S

[復(fù)制鏈接]
查看: 18416|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:41:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-Commutative Harmonic Analysis and Lie Groups
副標(biāo)題Proceedings of the I
編輯Jacques Carmona,Patrick Delorme,M.I.T.
視頻videohttp://file.papertrans.cn/667/666870/666870.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Non-Commutative Harmonic Analysis and Lie Groups; Proceedings of the I Jacques Carmona,Patrick Delorme,M.I.T. Conference proceedings 1987 S
描述All the papers in this volume are research papers presenting new results. Most of the results concern semi-simple Lie groups and non-Riemannian symmetric spaces: unitarisation, discrete series characters, multiplicities, orbital integrals. Some, however, also apply to related fields such as Dirac operators and characters in the general case.
出版日期Conference proceedings 1987
關(guān)鍵詞Dirac; Invariant; Lie; Volume; algorithms; character; commutative property; distribution; function; functions
版次1
doihttps://doi.org/10.1007/BFb0073014
isbn_softcover978-3-540-17701-2
isbn_ebook978-3-540-47775-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Non-Commutative Harmonic Analysis and Lie Groups影響因子(影響力)




書目名稱Non-Commutative Harmonic Analysis and Lie Groups影響因子(影響力)學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups網(wǎng)絡(luò)公開度




書目名稱Non-Commutative Harmonic Analysis and Lie Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups被引頻次




書目名稱Non-Commutative Harmonic Analysis and Lie Groups被引頻次學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups年度引用




書目名稱Non-Commutative Harmonic Analysis and Lie Groups年度引用學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups讀者反饋




書目名稱Non-Commutative Harmonic Analysis and Lie Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:24:34 | 只看該作者
0075-8434 ian symmetric spaces: unitarisation, discrete series characters, multiplicities, orbital integrals. Some, however, also apply to related fields such as Dirac operators and characters in the general case.978-3-540-17701-2978-3-540-47775-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 06:58:51 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/666870.jpg
5#
發(fā)表于 2025-3-22 11:04:15 | 只看該作者
Conference proceedings 1987All the papers in this volume are research papers presenting new results. Most of the results concern semi-simple Lie groups and non-Riemannian symmetric spaces: unitarisation, discrete series characters, multiplicities, orbital integrals. Some, however, also apply to related fields such as Dirac operators and characters in the general case.
6#
發(fā)表于 2025-3-22 16:49:53 | 只看該作者
https://doi.org/10.1007/BFb0073014Dirac; Invariant; Lie; Volume; algorithms; character; commutative property; distribution; function; functions
7#
發(fā)表于 2025-3-22 19:54:43 | 只看該作者
nellboote zuverl?ssige Unterlagen für die zweckm??ige Formgebung beim Entwurf und die rechnerische Ermittlung der erforderlichen Antriebsleistung zu liefern. Für diese Fahrzeuge sind bisher nur wenige brauchbare Unterlagen zu diesem Zweck bekannt. Sie sind aber in diesem Falle besonders wichtig, da
8#
發(fā)表于 2025-3-23 01:00:46 | 只看該作者
9#
發(fā)表于 2025-3-23 04:16:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
营山县| 远安县| 讷河市| 五原县| 项城市| 德州市| 龙岩市| 曲周县| 浮梁县| 城固县| 云浮市| 南充市| 新竹县| 视频| 深水埗区| 庄浪县| 德兴市| 黄浦区| 兴义市| 绩溪县| 柯坪县| 博湖县| 广元市| 海盐县| 自治县| 永顺县| 漾濞| 朔州市| 高唐县| 丰原市| 石泉县| 沁水县| 武乡县| 江西省| 百色市| 敦煌市| 甘孜县| 庆阳市| 江津市| 陇西县| 滨州市|