找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Associative Algebras and Related Topics; NAART II, Coimbra, P Helena Albuquerque,Jose Brox,Paulo Saraiva Conference proceedings 2023 Th

[復制鏈接]
樓主: Fuctionary
31#
發(fā)表于 2025-3-26 23:41:46 | 只看該作者
Local Derivations of Classical Simple Lie Algebrasmple Lie algebra . over an algebraically closed field . of characteristic . is a (global) derivation, excluding the algebra . in the case when . divides .. We also give a description of local derivations on certain simple Lie algebras over fields of . and show that they admit local derivations which are not derivations.
32#
發(fā)表于 2025-3-27 01:31:01 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:30 | 只看該作者
34#
發(fā)表于 2025-3-27 10:36:22 | 只看該作者
Poisson Structure on the Invariants of Pairs of Matricesa structure on the invariants of pairs of matrices: establishing an alternative proof of the explicit description of the ring of invariants, description of the coordinate ring of the third Calogero-Moser space, and computation of the coefficients of the characteristic equation of a matrix.
35#
發(fā)表于 2025-3-27 13:58:38 | 只看該作者
Examples and Patterns on Quadratic Lie Algebras large, but at first sight it is not clear whether an algebra is quadratic. Some necessary structural conditions appear due to the existence of an invariant form forcing elementary patterns. Through the paper we overview classical features and constructions on this topic and focus on the existence and constructions of local quadratic Lie algebras.
36#
發(fā)表于 2025-3-27 19:20:23 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:17 | 只看該作者
Universal Central Extensions of Compatible Leibniz Algebras algebra. Furthermore, we conjecture that the category of compatible Leibniz algebras does not satisfy the . condition, namely, the composition of central extensions (the middle term in one of them must be perfect) is also a central extension.
38#
發(fā)表于 2025-3-28 03:33:58 | 只看該作者
Invariant Theory of Free Bicommutative Algebras algebras: the Endlichkeitssatz of Emmy Noether, the Molien formula and the Chevalley-Shephard-Todd theorem and show the similarities and the differences in the case of bicommutative algebras. We also describe the symmetric polynomials in ..
39#
發(fā)表于 2025-3-28 07:07:20 | 只看該作者
Conference proceedings 2023ference, which was held at the University of Coimbra, Portugal, from July 18–22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras.?.The papers in this v
40#
發(fā)表于 2025-3-28 11:03:25 | 只看該作者
2194-1009 e field.Dedicated to Professor Alberto Elduque in honor of hThis proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18–22, 2022. The
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 14:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庐江县| 克东县| 安国市| 郯城县| 五华县| 梧州市| 新巴尔虎右旗| 临西县| 宜宾县| 宣恩县| 邢台市| 西昌市| 乌恰县| 县级市| 绵阳市| 长岭县| 涪陵区| 拜泉县| 华安县| 甘洛县| 南雄市| 达尔| 周宁县| 阳原县| 新乡市| 赫章县| 襄垣县| 菏泽市| 新郑市| 喀喇沁旗| 马尔康县| 剑川县| 房山区| 六安市| 瑞安市| 义马市| 安义县| 栖霞市| 安化县| 阳新县| 宁海县|