找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Archimedean L-Functions; of Siegel and Hilber Alexey A. Panchishkin Book 19911st edition Springer-Verlag Berlin Heidelberg 1991 11F.11R

[復(fù)制鏈接]
樓主: Prehypertension
11#
發(fā)表于 2025-3-23 09:41:09 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:39 | 只看該作者
13#
發(fā)表于 2025-3-23 21:27:59 | 只看該作者
Siegel modular forms and the holomorphic projection operator, recall main properties of Siegel modular forms and of the action of the Hecke algebra on them, as well as the definitions of spinor zeta functions and standard zeta functions (§1), see also [An2], [An7]. Then in §2 we present some standard results on theta series with a Dirichlet character [An-M1],
14#
發(fā)表于 2025-3-24 01:15:11 | 只看該作者
Non-Archimedean convolutions of Hilbert modular forms, their .-adic analogues; they correspond to certain automorphic forms on the group . = GL. × GL. over a totally real field . and have the form.where . are Hilbert automorphic forms of “holomorphic type” over ., and .(.), .(.) are their normalized Fourier coefficients (indexed by integral ideals . of
15#
發(fā)表于 2025-3-24 06:01:05 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:42 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:21 | 只看該作者
19#
發(fā)表于 2025-3-24 19:16:06 | 只看該作者
Non-Archimedean analytic functions, measures and distributions,ucts.This construction provides a generalization of measures first introduced by Yu.I.Manin [Man4], B.Mazur and H.P.F.SwinnertonDyer [Maz-SD]. Our construction [Pa5], [Pa9] was already successfully used in several problems concerning the p-adic analytic interpolation of special values of Dirichlet s
20#
發(fā)表于 2025-3-25 01:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 15:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河西区| 神木县| 报价| 许昌市| 东乡| 鞍山市| 罗源县| 张北县| 沙坪坝区| 晋城| 措勤县| 安庆市| 东光县| 思南县| 阿拉善右旗| 衡山县| 八宿县| 白山市| 绥德县| 河北区| 三都| 望江县| 沙坪坝区| 平泉县| 元江| 泽库县| 义乌市| 安康市| 沁水县| 娱乐| 毕节市| 德兴市| 宁明县| 乐山市| 灵武市| 沈阳市| 包头市| 林州市| 舟山市| 吕梁市| 崇州市|