找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Additive Measure and Integral; Dieter Denneberg Book 1994 Springer Science+Business Media Dordrecht 1994 artificial intelligence.bound

[復(fù)制鏈接]
樓主: Combat
31#
發(fā)表于 2025-3-26 23:30:55 | 只看該作者
Representing Functionals as Integrals,eory) is under what conditions the representing set function is sub- or supermodular and continuous from below. A corollary of the respective Representation Theorem is the classical Daniell-Stone Representation Theorem, where the representing set function is a measure.
32#
發(fā)表于 2025-3-27 01:57:38 | 只看該作者
Integration of Monotone Functions on Intervals,urvey integration of monotone functions. We are working with countable subdivisions to include the improper Riemann integral from the beginning. Crucial for later chapters will be the pseudo-inverse function of a decreasing function. It is introduced in the present chapter.
33#
發(fā)表于 2025-3-27 05:50:49 | 只看該作者
34#
發(fā)表于 2025-3-27 11:11:53 | 只看該作者
The Asymmetric Integral,aves asymmetric. In Chapter 7 we shall modify the definition in order to get a symmetric and fully homogenous integral. An important property of the asymmetric integral, not shared by the symmetric one, is comonotonic additivity.
35#
發(fā)表于 2025-3-27 17:32:30 | 只看該作者
The Symmetric Integral,tions our old integral and the new one differ in two relevant points: asymmetry is replaced by symmetry and comonotonic additivity is lost for functions essentially assuming positive and negative values.
36#
發(fā)表于 2025-3-27 17:46:17 | 只看該作者
Families of Measures and their Envelopes,r the integrals in the family. The main result is a characterization of submodular set functions by means of envelopes of additive set functions. The method of generating a set function as supremum of a given family of set functions will be employed, too, for proving the Radon-Nikodym Theorem in the next chapter.
37#
發(fā)表于 2025-3-28 00:07:12 | 只看該作者
38#
發(fā)表于 2025-3-28 04:08:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:55:18 | 只看該作者
7樓
40#
發(fā)表于 2025-3-28 12:50:48 | 只看該作者
7樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚远县| 信阳市| 孝昌县| 冷水江市| 万盛区| 临邑县| 丁青县| 巴青县| 伊金霍洛旗| 乌恰县| 呼图壁县| 九寨沟县| 六盘水市| 平凉市| 桓台县| 邵武市| 青海省| 马山县| 江口县| 大冶市| 手游| 佳木斯市| 民和| 鄱阳县| 阳高县| 镇远县| 五华县| 五常市| 清流县| 四子王旗| 临漳县| 鄂州市| 定西市| 新乡县| 屯门区| 韶山市| 当雄县| 凌海市| 宜都市| 普格县| 乌恰县|