找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Newton’s Method: an Updated Approach of Kantorovich’s Theory; José Antonio Ezquerro Fernández,Miguel ángel Herná Book 2017 Springer Intern

[復(fù)制鏈接]
樓主: 全體
21#
發(fā)表于 2025-3-25 05:52:45 | 只看該作者
https://doi.org/10.1007/978-3-319-55976-6Newton’s Method; Kantorovich’s Theory; Semilocal Convergence; Majorizing Sequence; Error Estimates; Order
22#
發(fā)表于 2025-3-25 09:31:06 | 只看該作者
23#
發(fā)表于 2025-3-25 12:55:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:07 | 只看該作者
José Antonio Ezquerro Fernández,Miguel ángel HernáUp-to-date account of Kantorovich′s theory for Newton′s method.Starts with a detailed presentation of Kantorovich′s approach and ends with new results and alternative approaches.Contains many numerica
25#
發(fā)表于 2025-3-25 23:19:30 | 只看該作者
The classic theory of Kantorovich,le of Banach, and later improved to semilocal quadratic convergence in 1948/49 (the Newton-Kantorovich theorem) [47, 49]. Also in 1949, Mysovskikh [61] gave a much simpler independent proof of semilocal quadratic convergence under slightly different theoretical assumptions, which are exploited in modern Newton algorithms, see [18].
26#
發(fā)表于 2025-3-26 00:15:21 | 只看該作者
Convergence conditions on the ,-th derivative of the operator,evious chapter for Newton’s method under conditions on the second derivative of the operator involved. So, we establish semilocal convergence results for Newton’s method under conditions on derivatives of the operator of order greater than two.
27#
發(fā)表于 2025-3-26 08:00:58 | 只看該作者
Convergence conditions on the first derivative of the operator,In this chapter, we study the semilocal convergence of Newton’s method under mild differentiability conditions on the operator ..
28#
發(fā)表于 2025-3-26 12:08:05 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 16:04:15 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 17:07:14 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那曲县| 梅河口市| 双桥区| 乐安县| 牙克石市| 云林县| 祁门县| 兰坪| 诸城市| 鄂托克前旗| 青龙| 鄂州市| 永福县| 库伦旗| 犍为县| 如皋市| 平湖市| 高陵县| 手游| 蒙自县| 唐海县| 平潭县| 宜宾县| 巨鹿县| 英山县| 察雅县| 门头沟区| 宁陵县| 从江县| 集贤县| 伊川县| 云阳县| 鸡东县| 柳林县| 城口县| 兖州市| 莱西市| 诸城市| 肥东县| 湘潭县| 禹州市|