找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Parameter Identification for Mathematical Models; Bernd Hofmann,Antonio Leit?o,Jorge P. Zubelli Book 2018 Springer Internati

[復制鏈接]
樓主: 征募
41#
發(fā)表于 2025-3-28 15:42:19 | 只看該作者
42#
發(fā)表于 2025-3-28 20:42:33 | 只看該作者
43#
發(fā)表于 2025-3-29 01:15:12 | 只看該作者
44#
發(fā)表于 2025-3-29 03:18:19 | 只看該作者
On Nonstationary Iterated Tikhonov Methods for Ill-Posed Equations in Banach Spaces,y, the Lagrange multipliers) for the nIT iteration, aiming to obtain a fast decay of the residual..Numerical experiments are presented for a 1D convolution problem (smooth Tikhonov functional and Banach parameter-space), and for a 2D deblurring problem (nonsmooth Tikhonov functional and Hilbert parameter-space).
45#
發(fā)表于 2025-3-29 10:11:44 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:29 | 只看該作者
47#
發(fā)表于 2025-3-29 15:34:31 | 只看該作者
Modification of Iterative Tikhonov Regularization Motivated by a Problem of Identification of Laser initial problem to that of finding an approximation of the function in a class of functions whose minimum can easily be calculated. The presented method is motivated by a problem of identification of laser beam quality parameters, however the scope of its applicability is quite general.
48#
發(fā)表于 2025-3-29 23:22:22 | 只看該作者
49#
發(fā)表于 2025-3-29 23:57:13 | 只看該作者
50#
發(fā)表于 2025-3-30 05:26:20 | 只看該作者
On Self-regularization of Ill-Posed Problems in Banach Spaces by Projection Methods,the dimension of subspaces as the regularization parameter. Convergence conditions are also given for the choice of the dimension by the discrepancy principle, without the requirement that the projection operators are uniformly bounded.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安吉县| 乐清市| 石屏县| 海丰县| 页游| 长白| 邳州市| 蕲春县| 福建省| 韶关市| 嘉荫县| 怀宁县| 冀州市| 永定县| 静海县| 罗田县| 惠安县| 宜兰县| 太保市| 福海县| 台前县| 定襄县| 宜君县| 江西省| 叶城县| 剑河县| 浙江省| 青海省| 安溪县| 文登市| 会东县| 呼图壁县| 永昌县| 闸北区| 洪江市| 北京市| 道真| 沽源县| 侯马市| 湟中县| 略阳县|