找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Microlocal Analysis; Jean-Michel Bony (Professor),Mitsuo Morimoto (Prof Book 1997 Springer-Verlag Tokyo 1997 Mathematica.com

[復制鏈接]
樓主: Insularity
31#
發(fā)表于 2025-3-26 21:26:54 | 只看該作者
http://image.papertrans.cn/n/image/665992.jpg
32#
發(fā)表于 2025-3-27 03:25:40 | 只看該作者
33#
發(fā)表于 2025-3-27 07:10:03 | 只看該作者
34#
發(fā)表于 2025-3-27 11:52:10 | 只看該作者
Stokes operators for microhyperbolic equationsperbolic operators, we prove that the elementary solution of the Cauchy problem is the composite of holomorphic microlocal operators and quantized contact transformations. As a corollary, we give a result for the propagation of the singularity.
35#
發(fā)表于 2025-3-27 16:37:14 | 只看該作者
Pseudodifferential and Fourier integral operators in scattering theorycribe in this talk some new results obtained jointly with Jan Dereziriski about the wave operators for Schr?dinger hamiltonians . for short-range and long-range potentials .. (These results will appear in a book published by Springer Verlag in the collection Texts and Monographs in Physics).
36#
發(fā)表于 2025-3-27 18:50:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:31:49 | 只看該作者
38#
發(fā)表于 2025-3-28 03:38:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:03:06 | 只看該作者
Eigen functions of the Laplacian of exponential typeLet E?, . the Lie norm on E? and . the dual Lie norm on E?. We denote by O(E?) the space of entire functions on E? and by Δ . = δ./δ... + δ./δ... + …+ δ./δ... the complex Laplacian on E?. Let r > 0. For F ∈ O (E?) we put ..
40#
發(fā)表于 2025-3-28 14:01:29 | 只看該作者
methods for control and signal processing researchers.Develo.An in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results, this text is structured into three parts...Part I deals with the mathematical prel
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
周至县| 宜阳县| 达拉特旗| 绩溪县| 汝州市| 汾西县| 叙永县| 清河县| 南昌县| 东安县| 新源县| 孟连| 邵武市| 肃北| 武定县| 衡阳县| 建德市| 兴城市| 乾安县| 永春县| 高邮市| 莎车县| 福贡县| 西吉县| 钟山县| 延津县| 海安县| 康定县| 寿阳县| 清流县| 阿坝| 安阳市| 吴忠市| 深水埗区| 瑞丽市| 视频| 乐平市| 比如县| 井陉县| 湘阴县| 朝阳县|