找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Mathematical Programming; Homage to Steven Vaj Franco Giannessi,Sándor Komlósi,Tamás Rapcsák Book 1998 Springer Science+Busin

[復制鏈接]
樓主: 哪能仁慈
51#
發(fā)表于 2025-3-30 11:19:27 | 只看該作者
52#
發(fā)表于 2025-3-30 14:55:09 | 只看該作者
,On Primal—Dual Path—Following Algorithms for Semidefinite Programming,y. Most of these methods are extensions of linear programming algorithms. The primal-dual central path following method for linear programming by Jansen et al. [6] has recently been extended to semidefinite programming by Jiang [7], utilizing the Nesterov-Todd direction and introducing a new distanc
53#
發(fā)表于 2025-3-30 20:03:40 | 只看該作者
54#
發(fā)表于 2025-3-30 20:49:13 | 只看該作者
Geometrical solution of weighted Fermat problem about triangles,numbers . find in plane a point . minimizing the sum of its distances to ., ., ., multiplied by . respectively. It is shown by simple geometrical methods that, if . satisfy the triangle inequalities and further conditions also involving the angles of the triangle ., then there is one and only one mi
55#
發(fā)表于 2025-3-31 02:37:17 | 只看該作者
56#
發(fā)表于 2025-3-31 05:37:38 | 只看該作者
57#
發(fā)表于 2025-3-31 10:37:08 | 只看該作者
58#
發(fā)表于 2025-3-31 14:48:35 | 只看該作者
59#
發(fā)表于 2025-3-31 19:43:52 | 只看該作者
Programming Under Probabilistic Constraint with Discrete Random Variable,ht-hand side values are random variables, are: the simple recourse model, the probabilistic constrained model and the combination of the two. In this paper we present algorithmic solution to the second and third models under the assumption that the random variables have a discrete joint distribution
60#
發(fā)表于 2025-3-31 21:45:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
聊城市| 宜阳县| 同江市| 南投市| 巨鹿县| 都兰县| 南宫市| 霍州市| 佛冈县| 河曲县| 霸州市| 靖江市| 花莲县| 闻喜县| 大理市| 伽师县| 洪湖市| 恭城| 仁化县| 土默特右旗| 剑川县| 本溪市| 安龙县| 左云县| 西平县| 黑山县| 德保县| 宁城县| 来凤县| 泸定县| 山西省| 砚山县| 米林县| 迁西县| 龙岩市| 扶绥县| 米脂县| 闻喜县| 浑源县| 石林| 桃园市|