找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Approximation Theory; In Memory of André B Javad Mashreghi,Myrto Manolaki,Paul Gauthier Book 2018 Springer Science+Business M

[復制鏈接]
樓主: Impacted
11#
發(fā)表于 2025-3-23 10:25:31 | 只看該作者
Approximation by Solutions of Elliptic Equations and Extension of Subharmonic Functions,In this review we present the main results jointly obtained by the authors and André Boivin (1955–2014) during the last 20 years. We also recall some important theorems obtained with colleagues and give new applications of the above mentioned results. Several open problems are also formulated.
12#
發(fā)表于 2025-3-23 15:47:25 | 只看該作者
Chebyshev Polynomials Associated with a System of Continua,We establish estimates from above for the uniform norm of the Chebyshev polynomials associated with a system of continua . by constructing monic polynomials with small norms on .. The estimates are exact (up to a constant factor) in the case where . has a piecewise quasiconformal boundary and its complement . has no outward pointing cusps.
13#
發(fā)表于 2025-3-23 21:25:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:51 | 只看該作者
15#
發(fā)表于 2025-3-24 03:36:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:09:31 | 只看該作者
19#
發(fā)表于 2025-3-24 22:23:27 | 只看該作者
Taylor Series, Universality and Potential Theory,ial theory has played in such investigations. It also briefly discusses potential theoretic aspects of universal Laurent series, universal Dirichlet series, and universal polynomial expansions of harmonic functions.
20#
發(fā)表于 2025-3-25 01:49:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 11:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
池州市| 岑溪市| 大悟县| 永德县| 湖口县| 宕昌县| 北宁市| 澳门| 安平县| 神池县| 儋州市| 交口县| 轮台县| 青河县| 额济纳旗| 八宿县| 招远市| 喀什市| 馆陶县| 工布江达县| 洛隆县| 定西市| 九台市| 宜都市| 平昌县| 牟定县| 阜新| 古交市| 岚皋县| 天津市| 鄄城县| 临湘市| 崇阳县| 景德镇市| 壤塘县| 大安市| 乌什县| 雷山县| 蒙自县| 青神县| 成都市|