找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap

[復(fù)制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 13:06:02 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:30 | 只看該作者
Matroska Feature-Selection Method for Microarray Dataset (Method 2),. The Method 1 offers a 95?% CI for the error rate and coefficient. We obtained two means of the error rates, M1 and M2, in the training and validation samples and proposed a simple model selection procedure to choose the best model with a minimum M2. We compared two statistical LDFs and six MP-base
13#
發(fā)表于 2025-3-23 21:07:09 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:22 | 只看該作者
Book 2016d discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi
15#
發(fā)表于 2025-3-24 06:02:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:56 | 只看該作者
New Theory of Discriminant Analysis After R. Fisher978-981-10-2164-0
17#
發(fā)表于 2025-3-24 14:16:20 | 只看該作者
New Theory of Discriminant Analysis,ely solve these problems through five mathematical programming-based linear discriminant functions (MP-based LDFs). First, I develop an optimal linear discriminant function using integer programming (IP-OLDF) based on a minimum number of misclassifications (minimum NM (MNM)) criterion. We consider d
18#
發(fā)表于 2025-3-24 16:51:31 | 只看該作者
,Iris Data and Fisher’s Assumption,s. Because Fisher evaluates Fisher’s LDF with these data, such data are very popular for the evaluation of discriminant functions. Therefore, we call these data, “Fisher’s Iris data.” Because we can easily separate setosa from virginica and vercicolor through a scatter plot, we usually discriminate
19#
發(fā)表于 2025-3-24 20:00:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁化县| 湖北省| 丹东市| 保靖县| 绥芬河市| 石楼县| 洛扎县| 海南省| 久治县| 武强县| 犍为县| 孝昌县| 连城县| 昔阳县| 南平市| 论坛| 肇庆市| 喀喇沁旗| 方山县| 靖西县| 桓仁| 济源市| 五家渠市| 威远县| 遂溪县| 始兴县| 胶南市| 富川| 阿拉善盟| 新昌县| 长垣县| 铜梁县| 思南县| 勃利县| 许昌县| 昆山市| 内黄县| 北票市| 巨野县| 竹溪县| 平定县|