找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap

[復(fù)制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 13:06:02 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:30 | 只看該作者
Matroska Feature-Selection Method for Microarray Dataset (Method 2),. The Method 1 offers a 95?% CI for the error rate and coefficient. We obtained two means of the error rates, M1 and M2, in the training and validation samples and proposed a simple model selection procedure to choose the best model with a minimum M2. We compared two statistical LDFs and six MP-base
13#
發(fā)表于 2025-3-23 21:07:09 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:22 | 只看該作者
Book 2016d discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi
15#
發(fā)表于 2025-3-24 06:02:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:56 | 只看該作者
New Theory of Discriminant Analysis After R. Fisher978-981-10-2164-0
17#
發(fā)表于 2025-3-24 14:16:20 | 只看該作者
New Theory of Discriminant Analysis,ely solve these problems through five mathematical programming-based linear discriminant functions (MP-based LDFs). First, I develop an optimal linear discriminant function using integer programming (IP-OLDF) based on a minimum number of misclassifications (minimum NM (MNM)) criterion. We consider d
18#
發(fā)表于 2025-3-24 16:51:31 | 只看該作者
,Iris Data and Fisher’s Assumption,s. Because Fisher evaluates Fisher’s LDF with these data, such data are very popular for the evaluation of discriminant functions. Therefore, we call these data, “Fisher’s Iris data.” Because we can easily separate setosa from virginica and vercicolor through a scatter plot, we usually discriminate
19#
發(fā)表于 2025-3-24 20:00:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺兰县| 湟中县| 石城县| 阜平县| 万安县| 什邡市| 桃源县| 台安县| 安图县| 泸溪县| 莎车县| 富裕县| 灵宝市| 阿荣旗| 资溪县| 蓬溪县| 徐汇区| 石首市| 钟祥市| 平武县| 兴国县| 新民市| 阳城县| 桓仁| 类乌齐县| 宁城县| 吴桥县| 青河县| 潮州市| 葵青区| 合江县| 嘉义县| 淮滨县| 鞍山市| 江都市| 贵南县| 土默特右旗| 福清市| 兴义市| 高台县| 房产|