找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society; Vera Tiesler,Andrea Cucina Book 20071st edition Sp

[復制鏈接]
樓主: 征募
11#
發(fā)表于 2025-3-23 09:59:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:43:11 | 只看該作者
Guillermo de Anda Alaníshe more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
13#
發(fā)表于 2025-3-23 18:23:22 | 只看該作者
Araceli Hurtado Cen,Aleida Cetina Bastida,Vera Tiesler,William J. Folanhe more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
14#
發(fā)表于 2025-3-23 23:12:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:09 | 只看該作者
17#
發(fā)表于 2025-3-24 14:41:42 | 只看該作者
Jane E. Buikstrahe more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
18#
發(fā)表于 2025-3-24 15:17:28 | 只看該作者
he more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
19#
發(fā)表于 2025-3-24 22:27:40 | 只看該作者
20#
發(fā)表于 2025-3-25 02:49:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 18:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
潮安县| 昆山市| 金昌市| 囊谦县| 炉霍县| 平武县| 紫金县| 孟津县| 旅游| 府谷县| 汝阳县| 年辖:市辖区| 邢台县| 潢川县| 唐海县| 丰县| 乡城县| 隆尧县| 启东市| 和龙市| 武鸣县| 白朗县| 西贡区| 抚顺市| 长子县| 尚志市| 全椒县| 松滋市| 涪陵区| 涟源市| 乌鲁木齐县| 鱼台县| 梁平县| 新丰县| 徐汇区| 泗水县| 宁晋县| 名山县| 类乌齐县| 策勒县| 邢台市|