找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Perspectives in Software Engineering; Proceedings of the 1 Jezreel Mejia,Mirna Mu?oz,Gloria Monica Martínez-A Conference proceedings 20

[復(fù)制鏈接]
樓主: 照相機(jī)
51#
發(fā)表于 2025-3-30 09:53:40 | 只看該作者
Aldo Osmar Ortiz-Ballona,Lisbeth Rodríguez-Mazahua,Asdrúbal López-Chau,María Antonieta Abud-Figueroaon using stochastic optimal control to predict financial deb.Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process?under uncertainty—has proven incredibly helpful to understanding and predicting deb
52#
發(fā)表于 2025-3-30 13:22:54 | 只看該作者
Abraham Castillo-García,Lisbeth Rodríguez-Mazahua,Felipe Castro-Medina,Beatriz A. Olivares-Zepahua,Mon using stochastic optimal control to predict financial deb.Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process?under uncertainty—has proven incredibly helpful to understanding and predicting deb
53#
發(fā)表于 2025-3-30 18:15:27 | 只看該作者
54#
發(fā)表于 2025-3-30 22:09:10 | 只看該作者
on using stochastic optimal control to predict financial deb.Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process?under uncertainty—has proven incredibly helpful to understanding and predicting deb
55#
發(fā)表于 2025-3-31 03:18:44 | 只看該作者
Jorge Rodas-Osollo,Karla Olmos-Sánchez,Alicia Jiménez-Galina,Marlene Soltero-Romero,Angélica Pérez-Con using stochastic optimal control to predict financial deb.Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process?under uncertainty—has proven incredibly helpful to understanding and predicting deb
56#
發(fā)表于 2025-3-31 05:09:37 | 只看該作者
Cristian Olvera,Graciela Lara,Arturo Valdivia,Adriana Pe?aon using stochastic optimal control to predict financial deb.Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process?under uncertainty—has proven incredibly helpful to understanding and predicting deb
57#
發(fā)表于 2025-3-31 10:30:34 | 只看該作者
Manuel Pérez Cota,Carlos Manuel Oliveira Alves,Miguel Ramón González Castroon using stochastic optimal control to predict financial deb.Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process?under uncertainty—has proven incredibly helpful to understanding and predicting deb
58#
發(fā)表于 2025-3-31 13:45:40 | 只看該作者
r and viscosity solutions of second-order HJB equations in i.Providing an introduction to stochastic optimal control in in?nite dimension, this book gives a complete account of the theory of second-order HJB equations in in?nite-dimensional Hilbert spaces, focusing on its applicability to associated
59#
發(fā)表于 2025-3-31 18:48:51 | 只看該作者
Adriana Pe?a Pérez Negrón,Mirna Mu?oz,David Bonilla Carranza,Nora Rangelr and viscosity solutions of second-order HJB equations in i.Providing an introduction to stochastic optimal control in in?nite dimension, this book gives a complete account of the theory of second-order HJB equations in in?nite-dimensional Hilbert spaces, focusing on its applicability to associated
60#
發(fā)表于 2025-3-31 22:56:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 05:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐庐县| 英吉沙县| 连山| 观塘区| 休宁县| 班玛县| 胶州市| 铁岭市| 庆元县| 陕西省| 友谊县| 犍为县| 嘉善县| 农安县| 天台县| 南安市| 平乐县| 文山县| 郸城县| 常熟市| 屏南县| 乌拉特后旗| 和龙市| 随州市| 杭锦后旗| 武山县| 错那县| 恩施市| 西城区| 越西县| 南康市| 宁晋县| 尉犁县| 南木林县| 巴青县| 青田县| 越西县| 西和县| 确山县| 会泽县| 顺平县|