找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Artificial Intelligence; JSAI-isAI 2022 Works Yasufumi Takama,Katsutoshi Yada,Sachiyo Arai Conference proceedings 2023 The

[復制鏈接]
樓主: ISH
31#
發(fā)表于 2025-3-26 22:57:05 | 只看該作者
JNLP Team: Deep Learning Approaches for?Tackling Long and?Ambiguous Legal Documents in?COLIEE 2022cs. The challenge for this competition is required not only the skills in processing long documents but also the ability to resolve ambiguity in the legal domain. For lengthy documents, we proposed a document-level attention mechanism (Task 1) and passage mining (Task 3, 4). Regarding ambiguity in t
32#
發(fā)表于 2025-3-27 04:20:14 | 只看該作者
33#
發(fā)表于 2025-3-27 07:56:47 | 只看該作者
34#
發(fā)表于 2025-3-27 10:08:56 | 只看該作者
HUKB at?the?COLIEE 2022 Statute Law Taskystems. Our new proposed IR system utilizes the similarity of descriptions of judicial decisions between questions and articles. In addition to this new IR system, we also use an ordinal keyword-based IR system (BM25) and the BERT-based IR system proposed in COLIEE 2020. Because of the different cha
35#
發(fā)表于 2025-3-27 17:37:15 | 只看該作者
Using Textbook Knowledge for?Statute Retrieval and?Entailment Classificationlationships between a query statement and a statute. While using transformer-based architectures, we extract additional statute information from textbooks and incorporate this knowledge into the original pipeline. Results indicate that there is a benefit of using the textbook knowledge in Statute Re
36#
發(fā)表于 2025-3-27 21:13:31 | 只看該作者
37#
發(fā)表于 2025-3-27 22:22:21 | 只看該作者
Less is Better: Constructing Legal Question Answering System by Weighing Longest Common Subsequence ed method tackles on how to construct an answering system capable of responding Yes/No legal questions, ultimately recognizing entailment between legal queries from past Japanese bar exams and relevant articles of Japan Civil Code (both in Japanese). We first attempted to extract disjunctive union t
38#
發(fā)表于 2025-3-28 05:14:02 | 只看該作者
39#
發(fā)表于 2025-3-28 08:55:28 | 只看該作者
Product Portfolio Optimization for?LTV Maximizationtractive products to stimulate purchase motivation. For recommendation, it is essential to narrow the target to effective customers and choose appropriate recommended products to maximize the effect with little cost. We formulated this problem as a product portfolio optimization problem to maximize
40#
發(fā)表于 2025-3-28 11:00:19 | 只看該作者
An Examination of Eating Experiences in Relation to Psychological States, Loneliness, and Depressionersonal communication. This study aimed to estimate and examine the psychological states and traits of texts describing eating experiences using BERT. Texts about positive, negative, and neutral eating experiences were collected from 877 crowd workers along with their psychological traits (lonelines
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 23:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沁水县| 新乐市| 阿克| 义乌市| 阳朔县| 双柏县| 惠州市| 青阳县| 杭锦旗| 措美县| 大同市| 呈贡县| 明水县| 巴塘县| 屯留县| 禹城市| 肃宁县| 理塘县| 湟源县| 肥西县| 顺义区| 灵川县| 鹤山市| 离岛区| 安宁市| 偏关县| 合作市| 吉水县| 绿春县| 永嘉县| 乡城县| 仁化县| 边坝县| 青铜峡市| 盖州市| 宁化县| 中卫市| 墨玉县| 瓦房店市| 密云县| 姚安县|