找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Era for Robust Speech Recognition; Exploiting Deep Lear Shinji Watanabe,Marc Delcroix,John R. Hershey Book 2017 Springer International

[復制鏈接]
查看: 30357|回復: 61
樓主
發(fā)表于 2025-3-21 16:33:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Era for Robust Speech Recognition
副標題Exploiting Deep Lear
編輯Shinji Watanabe,Marc Delcroix,John R. Hershey
視頻videohttp://file.papertrans.cn/666/665184/665184.mp4
概述Field of automatic speech recognition has evolved greatly since the introduction of deep learning.Covers the state-of-the-art in noise robustness for deep neural-network-based speech recognition.Inclu
圖書封面Titlebook: New Era for Robust Speech Recognition; Exploiting Deep Lear Shinji Watanabe,Marc Delcroix,John R. Hershey Book 2017 Springer International
描述.This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field.?.This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research..
出版日期Book 2017
關鍵詞Speech Recognition; Speech Processing; Natural Language Processing (NLP); Automatic Speech Recognition
版次1
doihttps://doi.org/10.1007/978-3-319-64680-0
isbn_softcover978-3-319-87849-2
isbn_ebook978-3-319-64680-0
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱New Era for Robust Speech Recognition影響因子(影響力)




書目名稱New Era for Robust Speech Recognition影響因子(影響力)學科排名




書目名稱New Era for Robust Speech Recognition網絡公開度




書目名稱New Era for Robust Speech Recognition網絡公開度學科排名




書目名稱New Era for Robust Speech Recognition被引頻次




書目名稱New Era for Robust Speech Recognition被引頻次學科排名




書目名稱New Era for Robust Speech Recognition年度引用




書目名稱New Era for Robust Speech Recognition年度引用學科排名




書目名稱New Era for Robust Speech Recognition讀者反饋




書目名稱New Era for Robust Speech Recognition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:14:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:52:26 | 只看該作者
6#
發(fā)表于 2025-3-22 15:41:02 | 只看該作者
7#
發(fā)表于 2025-3-22 20:26:12 | 只看該作者
Sequence-Discriminative Training of Neural Networksinator language model order and frame-smoothing, that may improve the recognition performance. We further propose a two-forward-pass procedure to speed up sequence-discriminative training when memory is the main constraint. Experiments were conducted on the AMI meeting corpus.
8#
發(fā)表于 2025-3-22 21:56:00 | 只看該作者
9#
發(fā)表于 2025-3-23 04:21:11 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:21 | 只看該作者
Discriminative Beamforming with Phase-Aware Neural Networks for Speech Enhancement and Recognitionopy cost function of ASR. In our experiments, the BF network is trained with both artificially generated and real microphone array signals. On the AMI meeting transcription, we found that the trained BF network produces competitive ASR results compared to traditional delay-and-sum beamforming on unseen array signals.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 14:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岗巴县| 吕梁市| 九龙县| 漠河县| 通海县| 绥江县| 东山县| 新闻| 紫金县| 涟源市| 盱眙县| 错那县| 井陉县| 宁国市| 双江| 冀州市| 阳山县| 桓仁| 扎鲁特旗| 海丰县| 密云县| 邳州市| 亳州市| 辽宁省| 沿河| 灌云县| 潜山县| 平果县| 沐川县| 沾益县| 和田市| 时尚| 青浦区| 福清市| 武乡县| 阿拉尔市| 高平市| 曲水县| 绿春县| 灵山县| 仪陇县|