找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Mathematical Physics; Proceedings of the X Heinrich Mitter,Ludwig Pittner Conference proceedings 1981 Springer-Verlag/W

[復制鏈接]
樓主: 我要黑暗
21#
發(fā)表于 2025-3-25 06:23:47 | 只看該作者
22#
發(fā)表于 2025-3-25 10:36:34 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:55 | 只看該作者
978-3-7091-8644-2Springer-Verlag/Wien 1981
24#
發(fā)表于 2025-3-25 19:01:35 | 只看該作者
25#
發(fā)表于 2025-3-25 20:22:08 | 只看該作者
Geometric Methods in Scattering Theoryectral and scattering theory of Hamiltonian operators in nonrelativistic quantum mechanics. For further details and references we refer to the lecture notes [7] of the Erice summer school 1980, which contain a discussion of various alternative routes, omitted here, and to [4,2,3,10,11,13,19,21].
26#
發(fā)表于 2025-3-26 02:05:11 | 只看該作者
Inverse Spectral and Scattering Theorys. The invention of these techniques goes back to the 50’s, and is mainly due to Gel’fand and Levitan, and Marchenko, with important contributions by Jost and Kohn, Faddeev, Newton and Sabatier, Regge, Loeffel, Martin, Cornille, Gasymov and Levitan,… All the references are given at the end.
27#
發(fā)表于 2025-3-26 05:59:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:59:40 | 只看該作者
Finiteness of Total Cross-Sectionsk for elementary particles, explicit bounds on amplitudes and cross-sections in the spherically symmetric case. We also study the coupling constant dependence of the cross-sections for potentials of a given sign by using analyticity properties with respect to this coupling constant. This paper contains several new unpublished results.
29#
發(fā)表于 2025-3-26 16:02:47 | 只看該作者
Analyticity Properties of the S-Matrix: Historical Survey and Recent Results in S-Matrix Theory and s of the multi– particle S-matrix is presented. It includes an historical survey, which outlines the successes but also the basic difficulties encountered in the sixties in both theories, and the evolution of the subject in the seventies.
30#
發(fā)表于 2025-3-26 17:42:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
即墨市| 孟州市| 宁乡县| 财经| 三门峡市| 罗江县| 南宁市| 乐昌市| 比如县| 离岛区| 闵行区| 游戏| 应城市| 原平市| 墨竹工卡县| 固安县| 平安县| 临桂县| 响水县| 南木林县| 克什克腾旗| 城固县| 武鸣县| 定西市| 桓台县| 广汉市| 中江县| 太和县| 麟游县| 曲周县| 望城县| 桓仁| 砀山县| 时尚| 和龙市| 平安县| 英吉沙县| 邹平县| 凌云县| 房产| 灵台县|