找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Advances in Soft Computing in Civil Engineering; AI-Based Optimizatio Gebrail Bekda?,Sinan Melih Nigdeli Book 2024 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Goiter
41#
發(fā)表于 2025-3-28 16:39:46 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:07 | 只看該作者
Machine Learning Approaches for Predicting Compressive and Shear Strength of EB FRP-Reinforced Concr enhancing structural performance, durability, and service life, yet accurately predicting the shear strength of these elements remains complex due to intricate interactions between influencing factors that conventional empirical equations struggle to capture. This comprehensive review critically a
43#
發(fā)表于 2025-3-29 02:17:24 | 只看該作者
44#
發(fā)表于 2025-3-29 05:31:29 | 只看該作者
Prediction of Bi-Linear Strength Envelope of Brazilian Soils Using Machine Learning Techniques,r, based on recently produced studies, it is believed that the development of computational models to estimate them is a tool capable of meeting this demand. This study aims, therefore, to develop a machine learning model capable of estimating bi-linear strength envelopes of soils. In order to achie
45#
發(fā)表于 2025-3-29 07:32:37 | 只看該作者
Assessment of Unconfined Compressive Strength of Stabilized Soil Using Artificial Intelligence Tool method of determining the UCS is often expensive and time-consuming. Also, the determination of UCS by conventional methods is less accurate and reliable because of the maintenance and calibration of instruments. Therefore, many empirical and advanced computational methods have been introduced and
46#
發(fā)表于 2025-3-29 13:06:14 | 只看該作者
A Review of Deformations Prediction for Oil and Gas Pipelines Using Machine and Deep Learning,preserving pipeline integrity is important for a secure and sustainable energy provider. The fast development of Machine Learning (ML) methods gives a beneficial possibility to build predictive models that can efficiently resolve these complex problems. This review paper principally emphasizes apply
47#
發(fā)表于 2025-3-29 15:38:33 | 只看該作者
,Determination of the Effect of XGBoost’s Parameters on a Structural Problem, walls have both structural constraints and constraints such as overturning, shear and soil-bearing capacity. In this chapter, a dataset is generated by optimizing the cantilever-type reinforced concrete retaining wall with Teaching Learning Based Optimization (TLBO). This dataset is analyzed with E
48#
發(fā)表于 2025-3-29 23:14:34 | 只看該作者
49#
發(fā)表于 2025-3-30 03:11:40 | 只看該作者
50#
發(fā)表于 2025-3-30 06:38:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南汇区| 东兰县| 白沙| 平陆县| 高阳县| 开江县| 桂平市| 建昌县| 蕲春县| 东台市| 洛浦县| 临清市| 军事| 绥化市| 黄平县| 明水县| 高要市| 高阳县| 池州市| 石渠县| 榆中县| 准格尔旗| 加查县| 灵寿县| 大余县| 红安县| 通海县| 大名县| 卓资县| 铁岭县| 濮阳县| 襄樊市| 新田县| 安西县| 彰化县| 河间市| 潢川县| 郸城县| 湖南省| 齐河县| 贵溪市|