找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna’s Theory of Value Distribution; The Second Main Theo William Cherry,Zhuan Ye Book 2001 Springer-Verlag Berlin Heidelberg 2001 Co

[復制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 13:02:41 | 只看該作者
The First Main Theorem,As we mentioned in the introduction, the basis for Nevanlinna’s theory are his two “main” theorems. This chapter discusses the first and easier of the two.
12#
發(fā)表于 2025-3-23 16:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:04 | 只看該作者
Nevanlinna’s Theory of Value Distribution978-3-662-12590-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
14#
發(fā)表于 2025-3-24 01:51:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:28:24 | 只看該作者
https://doi.org/10.1007/978-3-662-12590-8Complex analysis; Nevanlinna; Nevanlinna theory; approximation; diophantine; diophantine approximation; er
16#
發(fā)表于 2025-3-24 07:14:58 | 只看該作者
William Cherry,Zhuan YeIncludes supplementary material:
17#
發(fā)表于 2025-3-24 13:11:53 | 只看該作者
Introduction,plex variable will have . complex zeros, provided that the zeros are counted with multiplicity. If .(.) is a degree . polynomial, then .grows essentially like .. as . → ∞. Therefore, we can rephrase the Fundamental Theorem of Algebra as follows: a non-constant polynomial in one complex variable take
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:27 | 只看該作者
The Second Main Theorem via Logarithmic Derivatives,e lines, and the proof we give here is generally speaking similar to the proof given in Hayman’s book [Hay 1964]. Neither Nevanlinna nor Hayman were interested in the precise structure of the error term, and they did not use the refined logarithmic derivative estimates of Gol’dberg and Grinshtein, a
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 17:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
玛纳斯县| 安丘市| 图木舒克市| 探索| 襄汾县| 垣曲县| 萨迦县| 滦南县| 苏尼特右旗| 崇义县| 万全县| 黄冈市| 婺源县| 沿河| 夏邑县| 香港| 台北县| 定陶县| 普兰县| 青州市| 深圳市| 梨树县| 广水市| 汉中市| 沭阳县| 璧山县| 麟游县| 且末县| 抚远县| 郑州市| 新野县| 东兰县| 巧家县| 黄大仙区| 武乡县| 丹东市| 磐安县| 满城县| 井陉县| 五原县| 青阳县|